Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Immunol ; 209(10): 1827-1831, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36216513

ABSTRACT

Neutrophils are critical for the direct eradication of Aspergillus fumigatus conidia, but whether they mediate antifungal defense beyond their role as effectors is unclear. In this study, we demonstrate that neutrophil depletion impairs the activation of protective antifungal CCR2+ inflammatory monocytes. In the absence of neutrophils, monocytes displayed limited differentiation into monocyte-derived dendritic cells, reduced formation of reactive oxygen species, and diminished conidiacidal activity. Upstream regulator analysis of the transcriptional response in monocytes predicted a loss of STAT1-dependent signals as the potential basis for the dysfunction seen in neutrophil-depleted mice. We find that conditional removal of STAT1 on CCR2+ cells results in diminished antifungal monocyte responses, whereas exogenous administration of IFN-γ to neutrophil-depleted mice restores monocyte-derived dendritic cell maturation and reactive oxygen species production. Altogether, our findings support a critical role for neutrophils in antifungal immunity not only as effectors but also as important contributors to antifungal monocyte activation, in part by regulating STAT1-dependent functions.


Subject(s)
Monocytes , Neutrophils , Mice , Animals , Antifungal Agents , Reactive Oxygen Species , Aspergillus fumigatus
2.
PLoS Pathog ; 16(5): e1008579, 2020 05.
Article in English | MEDLINE | ID: mdl-32421753

ABSTRACT

Anti-helminth responses require robust type 2 cytokine production that simultaneously promotes worm expulsion and initiates the resolution of helminth-induced wounds and hemorrhaging. However, how infection-induced changes in hematopoiesis contribute to these seemingly distinct processes remains unknown. Recent studies have suggested the existence of a hematopoietic progenitor with dual mast cell-erythrocyte potential. Nonetheless, whether and how these progenitors contribute to host protection during an active infection remains to be defined. Here, we employed single cell RNA-sequencing and identified that the metabolic enzyme, carbonic anhydrase (Car) 1 marks a predefined bone marrow-resident hematopoietic progenitor cell (HPC) population. Next, we generated a Car1-reporter mouse model and found that Car1-GFP positive progenitors represent bipotent mast cell/erythrocyte precursors. Finally, we show that Car1-expressing HPCs simultaneously support mast cell and erythrocyte responses during Trichinella spiralis infection. Collectively, these data suggest that mast cell/erythrocyte precursors are mobilized to promote type 2 cytokine responses and alleviate helminth-induced blood loss, developmentally linking these processes. Collectively, these studies reveal unappreciated hematopoietic events initiated by the host to combat helminth parasites and provide insight into the evolutionary pressure that may have shaped the developmental relationship between mast cells and erythrocytes.


Subject(s)
Erythroid Precursor Cells/immunology , Erythropoiesis/immunology , Mast Cells/immunology , Mastocytosis/immunology , Trichinella spiralis/immunology , Trichinellosis/immunology , Animals , Carbonic Anhydrase I/genetics , Carbonic Anhydrase I/immunology , Erythroid Precursor Cells/parasitology , Erythroid Precursor Cells/pathology , Female , Mast Cells/parasitology , Mast Cells/pathology , Mastocytosis/genetics , Mastocytosis/pathology , Mice , Mice, Transgenic , Trichinellosis/genetics , Trichinellosis/pathology
3.
Proc Natl Acad Sci U S A ; 116(39): 19665-19674, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31488707

ABSTRACT

The length and complexity of tuberculosis (TB) therapy, as well as the propensity of Mycobacterium tuberculosis to develop drug resistance, are major barriers to global TB control efforts. M. tuberculosis is known to have the ability to enter into a drug-tolerant state, which may explain many of these impediments to TB treatment. We have identified a mechanism of genetically encoded but rapidly reversible drug tolerance in M. tuberculosis caused by transient frameshift mutations in a homopolymeric tract (HT) of 7 cytosines (7C) in the glpK gene. Inactivating frameshift mutations associated with the 7C HT in glpK produce small colonies that exhibit heritable multidrug increases in minimal inhibitory concentrations and decreases in drug-dependent killing; however, reversion back to a fully drug-susceptible large-colony phenotype occurs rapidly through the introduction of additional insertions or deletions in the same glpK HT region. These reversible frameshift mutations in the 7C HT of M. tuberculosis glpK occur in clinical isolates, accumulate in M. tuberculosis-infected mice with further accumulation during drug treatment, and exhibit a reversible transcriptional profile including induction of dosR and sigH and repression of kstR regulons, similar to that observed in other in vitro models of M. tuberculosis tolerance. These results suggest that GlpK phase variation may contribute to drug tolerance, treatment failure, and relapse in human TB. Drugs effective against phase-variant M. tuberculosis may hasten TB treatment and improve cure rates.


Subject(s)
Drug Tolerance/genetics , Glycerol Kinase/genetics , Mycobacterium tuberculosis/genetics , Animals , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Female , Glycerol Kinase/metabolism , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism , Promoter Regions, Genetic/genetics , Tuberculosis/microbiology
4.
Article in English | MEDLINE | ID: mdl-32571828

ABSTRACT

We have identified a previously unknown mechanism of reversible high-level ethambutol (EMB) resistance in Mycobacterium tuberculosis that is caused by a reversible frameshift mutation in the M. tuberculosisorn gene. A frameshift mutation in orn produces the small-colony-variant (SCV) phenotype, but this mutation does not change the MICs of any drug for wild-type M. tuberculosis However, the same orn mutation in a low-level EMB-resistant double embB-aftA mutant (MIC = 8 µg/ml) produces an SCV with an EMB MIC of 32 µg/ml. Reversible resistance is indistinguishable from a drug-persistent phenotype, because further culture of these orn-embB-aftA SCV mutants results in rapid reversion of the orn frameshifts, reestablishing the correct orn open reading frame, returning the culture to normal colony size, and reversing the EMB MIC back to that (8 µg/ml) of the parental strain. Transcriptomic analysis of orn-embB-aftA mutants compared to wild-type M. tuberculosis identified a 27-fold relative increase in the expression of embC, which is a cellular target for EMB. Expression of embC in orn-embB-aftA mutants was also increased 5-fold compared to that in the parental embB-aftA mutant, whereas large-colony orn frameshift revertants of the orn-embB-aftA mutant had levels of embC expression similar to that of the parental embB-aftA strain. Reversible frameshift mutants may contribute to a reversible form of microbiological drug resistance in human tuberculosis.


Subject(s)
Drug Resistance, Bacterial , Ethambutol , Frameshift Mutation , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial/genetics , Ethambutol/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Pentosyltransferases/genetics
5.
Cell Commun Signal ; 18(1): 134, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843053

ABSTRACT

Chimeric Antigen Receptor (CAR) immunotherapy utilizes genetically-engineered immune cells that express a unique cell surface receptor that combines tumor antigen specificity with immune cell activation. In recent clinical trials, the adoptive transfer of CAR-modified immune cells (including CAR-T and CAR-NK cells) into patients has been remarkably successful in treating multiple refractory blood cancers. To improve safety and efficacy, and expand potential applicability to other cancer types, CARs with different target specificities and sequence modifications are being developed and tested by many laboratories. Despite the overall progress in CAR immunotherapy, conventional tools to design and evaluate the efficacy and safety of CAR immunotherapies can be inaccurate, time-consuming, costly, and labor-intensive. Furthermore, existing tools cannot always determine how responsive individual patients will be to a particular CAR immunotherapy. Recent work in our laboratory suggests that the quality of the immunological synapse (IS) can accurately predict CAR-modified cell efficacy (and toxicity) that can correlate with clinical outcomes. Here we review current efforts to develop a Synapse Predicts Efficacy (SPE) system for easy, rapid and cost-effective evaluation of CAR-modified immune cell immunotherapy. Ultimately, we hypothesize the conceptual basis and clinical application of SPE will serve as an important parameter in evaluating CAR immunotherapy and significantly advance precision cancer immunotherapy. Video abstract Graphic abstract for manuscript CCAS-D-20-00136 by Liu, D., et al., 'The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy". The various branches of evaluating cancer immunotherapy metaphorically represented as a Rubik's cube. The development of a novel approach to predict the effectiveness of Chimeric Antigen Receptor (CAR)-modified cells by quantifying the quality of CAR IS will introduce a new parameter to the rapidly expanding field of cancer immunotherapy. Currently, no single parameter can predict the clinical outcome or efficacy of a specific type of CAR-modified cell. IS quality will serve as a quantifiable measure to evaluate CAR products and can be used in conjunction with other conventional parameters to form a composite clinical predictor. Much like a Rubik's cube has countless configurations, several methods and combinations of clinical metrics have arisen for evaluating the ability of a given immunotherapeutic strategy to treat cancer. The quality of IS depicting cancer immunotherapy is metaphorically expressed as a Rubik's cube. Each face/color represents one aspect of cancer therapy. Each grid in one face indicates one factor within that aspect of cancer therapy. For example, the green color represents the tumor microenvironment, and one out of the nine grids in the green color indicates suppressor cells (suppressors in green). Changes in one factor may completely alter the entire strategy of cancer therapy. However, the quality of IS (illuminated center red grid) makes the effectiveness of CAR immunotherapy predictable.


Subject(s)
Immunological Synapses/metabolism , Immunotherapy , Receptors, Chimeric Antigen/metabolism , Animals , Biomarkers, Tumor/metabolism , Clinical Trials as Topic , Humans , Treatment Outcome
6.
Mol Pain ; 122016.
Article in English | MEDLINE | ID: mdl-27030721

ABSTRACT

BACKGROUND: Peripheral nerve injury leads to changes in gene expression in primary sensory neurons of the injured dorsal root ganglia. These changes are believed to be involved in neuropathic pain genesis. Previously, these changes have been identified using gene microarrays or next generation RNA sequencing with poly-A tail selection, but these approaches cannot provide a more thorough analysis of gene expression alterations after nerve injury. METHODS: The present study chose to eliminate mRNA poly-A tail selection and perform strand-specific next generation RNA sequencing to analyze whole transcriptomes in the injured dorsal root ganglia following spinal nerve ligation. Quantitative real-time reverse transcriptase polymerase chain reaction assay was carried out to verify the changes of some differentially expressed RNAs in the injured dorsal root ganglia after spinal nerve ligation. RESULTS: Our results showed that more than 50 million (M) paired mapped sequences with strand information were yielded in each group (51.87 M-56.12 M in sham vs. 51.08 M-57.99 M in spinal nerve ligation). Six days after spinal nerve ligation, expression levels of 11,163 out of a total of 27,463 identified genes in the injured dorsal root ganglia significantly changed, of which 52.14% were upregulated and 47.86% downregulated. The largest transcriptional changes were observed in protein-coding genes (91.5%) followed by noncoding RNAs. Within 944 differentially expressed noncoding RNAs, the most significant changes were seen in long interspersed noncoding RNAs followed by antisense RNAs, processed transcripts, and pseudogenes. We observed a notable proportion of reads aligning to intronic regions in both groups (44.0% in sham vs. 49.6% in spinal nerve ligation). Using quantitative real-time polymerase chain reaction, we confirmed consistent differential expression of selected genes including Kcna2, Oprm1 as well as lncRNAs Gm21781 and 4732491K20Rik following spinal nerve ligation. CONCLUSION: Our findings suggest that next generation RNA sequencing can be used as a promising approach to analyze the changes of whole transcriptomes in dorsal root ganglia following nerve injury and to possibly identify new targets for prevention and treatment of neuropathic pain.


Subject(s)
Ganglia, Spinal/metabolism , Gene Expression Profiling/methods , Peripheral Nerve Injuries/genetics , Alternative Splicing/genetics , Animals , Ganglia, Spinal/pathology , Genome , Hyperalgesia/complications , Hyperalgesia/genetics , Ligation , Lumbar Vertebrae/pathology , Male , Mice, Inbred C57BL , Peripheral Nerve Injuries/complications , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, RNA , Signal Transduction/genetics , Spinal Nerves/pathology
7.
Mol Genet Genomics ; 291(1): 271-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26319649

ABSTRACT

Long gaps between active replication origins probably occur frequently during chromosome replication, but little is known about how cells cope with them. To address this issue, we deleted replication origins from S. cerevisiae chromosome III to create chromosomes with long interorigin gaps and identified mutations that destabilize them [originless fragment maintenance (Ofm) mutations]. ofm6-1 is an allele of HST3, a sirtuin that deacetylates histone H3K56Ac. Hst3p and Hst4p are closely related, but hst4Δ does not cause an Ofm phenotype. Expressing HST4 under the control of the HST3 promoter suppressed the Ofm phenotype of hst3Δ, indicating Hst4p, when expressed at the appropriate levels and/or at the correct time, can fully substitute for Hst3p in maintenance of ORIΔ chromosomes. H3K56Ac is the Hst3p substrate critical for chromosome maintenance. H3K56Ac-containing nucleosomes are preferentially assembled into chromatin behind replication forks. Deletion of the H3K56 acetylase and downstream chromatin assembly factors suppressed the Ofm phenotype of hst3, indicating that persistence of H3K56Ac-containing chromatin is deleterious for the maintenance of ORIΔ chromosomes, and experiments with synchronous cultures showed that it is replication of H3K56Ac-containing chromatin that causes chromosome loss. This work shows that while normal chromosomes can tolerate hyperacetylation of H3K56Ac, deacetylation of histone H3K56Ac by Hst3p is required for stable maintenance of a chromosome with a long interorigin gap. The Ofm phenotype is the first report of a chromosome instability phenotype of an hst3 single mutant.


Subject(s)
Chromosomes, Fungal/genetics , Histone Deacetylases/genetics , Histones/genetics , Replication Origin/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromosomal Instability/genetics , DNA Damage/genetics , DNA Replication/genetics , Mutation/genetics
8.
J Immunol ; 190(6): 2747-55, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23378427

ABSTRACT

Mycobacterium tuberculosis infection alters macrophage gene expression and macrophage response to IFN-γ, a critical host defense cytokine. However, regulation of these changes is poorly understood. We report discordance of changes in nascent transcript and total nuclear RNA abundance for the transcription factors STAT1 and IRF1, together with lack of effect on their RNA half-lives, in human THP-1 cells infected with M. tuberculosis and stimulated with IFN-γ. The results indicate that negative postinitiation regulation of mRNA biogenesis limits the expression of these factors, which mediate host defense against M. tuberculosis through the cellular response to IFN-γ. Consistent with the results for STAT1 and IRF1, transcriptome analysis reveals downregulation of postinitiation mRNA biogenesis processes and pathways by infection, with and without IFN-γ stimulation. Clinical relevance for regulation of postinitiation mRNA biogenesis is demonstrated by studies of donor samples showing that postinitiation mRNA biogenesis pathways are repressed in latent tuberculosis infection compared with cured disease and in active tuberculosis compared with ongoing treatment or with latent tuberculosis. For active disease and latent infection donors from two populations (London, U.K., and The Gambia), each analyzed using a different platform, pathway-related gene expression differences were highly correlated, demonstrating substantial specificity in the effect. Collectively, the molecular and bioinformatic analyses point toward downregulation of postinitiation mRNA biogenesis pathways as a means by which M. tuberculosis infection limits expression of immunologically essential transcription factors. Thus, negative regulation of postinitiation mRNA biogenesis can constrain the macrophage response to infection and overall host defense against tuberculosis.


Subject(s)
Down-Regulation/immunology , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/biosynthesis , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Cell Line , Down-Regulation/genetics , Humans , Interferon Regulatory Factor-1/biosynthesis , Interferon Regulatory Factor-1/genetics , Interferon-gamma/physiology , Latent Tuberculosis/genetics , Latent Tuberculosis/immunology , Latent Tuberculosis/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/pathology , Mycobacterium tuberculosis/immunology , STAT1 Transcription Factor/biosynthesis , STAT1 Transcription Factor/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptional Activation/genetics , Transcriptional Activation/immunology , Tuberculosis, Pulmonary/metabolism
9.
J Pain ; 25(1): 101-117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37524222

ABSTRACT

Mechanisms underlying neuropathic pain (NP) are complex with multiple genes, their interactions, environmental and epigenetic factors being implicated. Transcriptional changes in the trigeminal (TG) and dorsal root (DRG) ganglia have been implicated in the development and maintenance of NP. Despite efforts to unravel molecular mechanisms of NP, many remain unknown. Also, most of the studies focused on the spinal system. Although the spinal and trigeminal systems share some of the molecular mechanisms, differences exist. We used RNA-sequencing technology to identify differentially expressed genes (DEGs) in the TG and DRG at baseline and 3 time points following the infraorbital or sciatic nerve injuries, respectively. Pathway analysis and comparison analysis were performed to identify differentially expressed pathways. Additionally, upstream regulator effects were investigated in the two systems. DEG (differentially expressed genes) analyses identified 3,225 genes to be differentially expressed between TG and DRG in naïve animals, 1,828 genes 4 days post injury, 5,644 at day 8 and 9,777 DEGs at 21 days postinjury. A comparison of top enriched canonical pathways revealed that a number of signaling pathway was significantly inhibited in the TG and activated in the DRG at 21 days postinjury. Finally, CORT upstream regulator was predicted to be inhibited in the TG while expression levels of the CSF1 upstream regulator were significantly elevated in the DRG at 21 days postinjury. This study provides a basis for further in-depth studies investigating transcriptional changes, pathways, and upstream regulation in TG and DRG in rats exposed to peripheral nerve injuries. PERSPECTIVE: Although trigeminal and dorsal root ganglia are homologs of each other, they respond differently to nerve injury and therefore treatment. Activation/inhibition of number of biological pathways appear to be ganglion/system specific suggesting that different approaches might be required to successfully treat neuropathies induced by injuries in spinal and trigeminal systems.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Rats , Animals , Ganglia, Spinal/metabolism , Transcriptome , Trigeminal Ganglion/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Neuralgia/genetics , Neuralgia/metabolism
10.
Cell Commun Signal ; 11: 60, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23958185

ABSTRACT

BACKGROUND: Pulmonary infection of humans by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), results in active disease in 5-10% of individuals, while asymptomatic latent Mtb infection (LTBI) is established in the remainder. The host immune responses that determine this differential outcome following Mtb infection are not fully understood. Using a rabbit model of pulmonary TB, we have shown that infection with the Mtb clinical isolate HN878 (a hyper-virulent W-Beijing lineage strain) leads to progressive cavitary disease similar to what is seen in humans with active TB. In contrast, infection with Mtb CDC1551 (a hyper-immunogenic clinical isolate) is efficiently controlled in rabbit lungs, with establishment of LTBI, which can be reactivated upon treatment with immune-suppressive drugs. We hypothesize that the initial interaction of Mtb with the cells of the host response in the lungs determine later outcome of infection. RESULTS: To test this hypothesis, we used our rabbit model of pulmonary TB and infected the animals with Mtb HN878 or CDC1551. At 3 hours, with similar lung bacillary loads, HN878 infection caused greater accumulation of mononuclear and polymorphonuclear leukocytes (PMN) in the lungs, compared to animals infected with CDC1551. Using whole-genome microarray gene expression analysis, we delineated the early transcriptional changes in the lungs of HN878- or CDC1551-infected rabbits at this time and compared them to the differential response at 4 weeks of Mtb-infection. Our gene network and pathway analysis showed that the most significantly differentially expressed genes involved in the host response to HN878, compared to CDC1551, at 3 hours of infection, were components of the inflammatory response and STAT1 activation, recruitment and activation of macrophages, PMN, and fMLP (N-formyl-Methionyl-Leucyl-Phenylalanine)-stimulation. At 4 weeks, the CDC1551 bacillary load was significantly lower and the granulomatous response reduced compared to HN878 infection. Moreover, although inflammation was dampened in both Mtb infections at 4 weeks, the majority of the differentially expressed gene networks were similar to those seen at 3 hours. CONCLUSIONS: We propose that differential regulation of the inflammation-associated innate immune response and related gene expression changes seen at 3 hours determine the long term outcome of Mtb infection in rabbit lungs.


Subject(s)
Immunity, Innate , Tuberculosis, Pulmonary/immunology , Animals , Inflammation/immunology , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Mycobacterium tuberculosis , Neutrophils/metabolism , Rabbits , STAT1 Transcription Factor/metabolism , Time Factors , Transcriptome , Tuberculosis, Pulmonary/microbiology
11.
Biomedicines ; 10(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35740365

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic disproportionately affects immunocompetent and immunocompromised individuals, with the latter group being more vulnerable to severe disease and death. However, the differential pathogenesis of SARS-CoV-2 in the context of a specific immunological niche remains unknown. Similarly, systematic analysis of disease pathology in various extrapulmonary organs in immunocompetent and immunocompromised hosts during SARS-CoV-2 infection is not fully understood. We used a hamster model of SARS-CoV-2 infection, which recapitulates the pathophysiology of patients with mild-to-moderate COVID-19, to determine the dynamics of SARS-CoV-2 replication and histopathology at organ-level niches and map how COVID-19 symptoms vary in different immune contexts. Hamsters were intranasally infected with low (LD) or high (HD) inoculums of SARS-CoV-2, and the kinetics of disease pathology and viral load in multiple organs, antibody response, inflammatory cytokine expression, and genome-wide lung transcriptome by RNAseq analysis were determined and compared against corresponding responses from chemically induced immunocompromised hamsters. We observed transient body weight loss proportional to the SARS-CoV-2 infectious dose in immunocompetent hamsters. The kinetics of viral replication and peak viral loads were similar between LD and HD groups, although the latter developed more severe disease pathology in organs. Both groups generated a robust serum antibody response. In contrast, infected immunocompromised animals showed more prolonged body weight loss and mounted an inadequate SARS-CoV-2-neutralizing antibody response. The live virus was detected in the pulmonary and extrapulmonary organs for extended periods. These hamsters also had persistent inflammation with severe bronchiolar-alveolar hyperplasia/metaplasia. Consistent with the differential disease presentation, distinct changes in inflammation and immune cell response pathways and network gene expression were seen in the lungs of SARS-CoV-2-infected immunocompetent and immunocompromised animals.

12.
Liver Transpl ; 16(5): 588-99, 2010 May.
Article in English | MEDLINE | ID: mdl-20440768

ABSTRACT

The benefits of ischemic preconditioning (IPC) in reducing ischemia/reperfusion injury (IRI) remain indistinct in human liver transplantation (LT). To further understand mechanistic aspects of IPC, we performed microarray analyses as a nested substudy in a randomized trial of 10-minute IPC in 101 deceased donor LTs. Liver biopsies were performed after cold storage and at 90 minutes postreperfusion in 40 of 101 subjects. Global gene expression profiles in 6 biopsy pairs in IPC and work standard organ recovery groups at both time points were compared using the Affymetrix GeneChip Human Gene 1.0 ST array. Transcripts with >1.5-fold change and P < 0.05 were considered significant. IPC altered expression of 82 transcripts in antioxidant, immunological, lipid biosynthesis, cell development and growth, and other groups. Real-time polymerase chain reaction and immunoblotting validated our microarray data. IPC-induced overexpression of glutathione S-transferase mu transcripts (GSTM1, GSTM3, GSTM4, and GSTM5) was accompanied by increased protein expression and may contribute to a decrease in oxidative stress. However, the increased expression of fatty acid synthase may increase oxidative stress, and tumor necrosis factor ligand superfamily member 10 may promote apoptosis. These changes, in combination with decreased expression of heparin-binding epidermal growth factor-like growth factor and insulin-like growth factor binding protein-1, both of which inhibit apoptosis, may increase IRI. In our study of deceased donor LT, IPC induces changes in gene expression, some of which are potentially beneficial but some which are potentially injurious. Thus, our findings of changes in gene expression mirror the outcomes in our clinical trial.


Subject(s)
Gene Expression Profiling , Ischemic Preconditioning , Liver Transplantation , Tissue Donors , Adult , Antioxidants , Biopsy , Blotting, Western , Cadaver , Cell Division/genetics , Enzymes/genetics , Female , Humans , Lipid Metabolism/genetics , Liver/pathology , Liver/physiology , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
13.
Front Neurosci ; 14: 600136, 2020.
Article in English | MEDLINE | ID: mdl-33408609

ABSTRACT

At birth, there are 100 billion neurons in the human brain, with functional neural circuits extending through the spine to the epidermis of the feet and toes. Following birth, limbs and vertebrae continue to grow by several orders of magnitude, forcing established axons to grow by up to 200 cm in length without motile growth cones. The leading regulatory paradigm suggests that biomechanical expansion of mitotic tissue exerts tensile force on integrated nervous tissue, which synchronizes ongoing growth of spanning axons. Here, we identify unique transcriptional changes in embryonic rat DRG and cortical neurons while the corresponding axons undergo physiological levels of controlled mechanical stretch in vitro. Using bioreactors containing cultured neurons, we recapitulated the peak biomechanical increase in embryonic rat crown-rump-length. Biologically paired sham and "stretch-grown" DRG neurons spanned 4.6- and 17.2-mm in length following static or stretch-induced growth conditions, respectively, which was associated with 456 significant changes in gene transcription identified by genome-wide cDNA microarrays. Eight significant genes found in DRG were cross-validated in stretch-grown cortical neurons by qRT-PCR, which included upregulation of Gpat3, Crem, Hmox1, Hpse, Mt1a, Nefm, Sprr1b, and downregulation of Nrep. The results herein establish a link between biomechanics and gene transcription in mammalian neurons, which elucidates the mechanism underlying long-term growth of axons, and provides a basis for new research in therapeutic axon regeneration.

14.
Eur J Cardiothorac Surg ; 57(1): 30-38, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31006003

ABSTRACT

OBJECTIVES: Thoracic endovascular techniques for aneurysm repair offer less invasive alternatives to open strategies. Both approaches, however, are associated with the risk for neurological complications. Despite adjuncts to maintain spinal cord perfusion, ischaemia and paraplegia continue to occur during thoracoabdominal aortic aneurysm (TAAA) repair. Staging of such extensive procedures has been proven to decrease the risk for spinal cord injury. Archived biopsy specimens may offer insight into the molecular signature of the reorganization and expansion of the spinal collateral network during staged endovascular interventions in the setting of TAAA. METHODS: Biological replicates of total RNA were isolated from existing paraspinous muscle samples from 22 Yorkshire pigs randomized to 1 of 3 simulated TAAA repair strategies as part of a previous study employing coil embolization of spinal segmental arteries within the thoracic and lumbar spine. Gene expression profiling was performed using the Affymetrix GeneChip Porcine array. RESULTS: Microarray analysis identified 649 differentially expressed porcine genes (≥1.3-fold change, P ≤ 0.05) when comparing paralysed and non-paralysed subjects. Of these, 355 were available for further analysis. When mapped to the human genome, 169 Homo sapiens orthologues were identified. Integrated interpretation of gene expression profiles indicated the significant regulation of transcriptional regulators (such as nuclear factor кB), cytokine (including CXCL12) elements contributing to hypoxia signalling in the cardiovascular system (vascular endothelial growth factor and UBE2) and cytoskeletal elements (like dystrophin (DMD) and matrix metallopeptidase (MMP)). CONCLUSIONS: This study demonstrates the ability of microarray-based platforms to detect the differential expression of genes in paraspinous muscle during staged TAAA repair. Pathway enrichment analysis detected subcellular actors accompanying the neuroprotective effects of staged endovascular coiling. These observations provide new insight into the potential prognostic and therapeutic value of gene expression profiling in monitoring and modulating the arteriolar remodelling in the collateral network.


Subject(s)
Aortic Aneurysm, Thoracic , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Spinal Cord Ischemia , Animals , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/surgery , Gene Expression Profiling , Microarray Analysis , Muscles , Swine , Treatment Outcome , Vascular Endothelial Growth Factor A
15.
Eur J Pain ; 24(5): 967-982, 2020 05.
Article in English | MEDLINE | ID: mdl-32100907

ABSTRACT

BACKGROUND: The dorsal root (DRG) and trigeminal (TG) ganglia contain cell bodies of sensory neurons of spinal and trigeminal systems, respectively. They are homologs of each other; however, differences in how the two systems respond to injury exist. Trigeminal nerve injuries rarely result in chronic neuropathic pain (NP). To date, no genes involved in the differential response to nerve injury between the two systems have been identified. We examined transcriptional changes involved in the development of trigeminal and spinal NP. METHODS: Trigeminal and spinal mononueropathies were induced by chronic constriction injury to the infraorbital or sciatic nerve. Expression levels of 84 genes in the TG and DRG at 4, 8 and 21 days post-injury were measured using real-time PCR. RESULTS: We found time-dependent and ganglion-specific transcriptional regulation that may contribute to the development of corresponding neuropathies. Among genes significantly regulated in both ganglia Cnr2, Grm5, Htr1a, Il10, Oprd1, Pdyn, Prok2 and Tacr1 were up-regulated in the TG but down-regulated in the DRG at 4 days post-injury; at 21 days post-injury, Adora1, Cd200, Comt, Maob, Mapk3, P2rx4, Ptger1, Tnf and Slc6a2 were significantly up-regulated in the TG but down-regulated in the DRG. CONCLUSIONS: Our findings suggest that spinal and trigeminal neuropathies due to trauma are differentially regulated. Subtle but important differences between the two ganglia may affect NP development. SIGNIFICANCE: We present distinct transcriptional alterations in the TG and DRG that may contribute to differences observed in the corresponding mononeuropathies. Since the trigeminal system seems more resistant to developing NP following trauma our findings lay ground for future research to detect genes and pathways that may act in a protective or facilitatory manner. These may be novel and important therapeutic targets.


Subject(s)
Peripheral Nerve Injuries , Trigeminal Ganglion , Animals , Ganglia, Spinal , Gene Expression , Norepinephrine Plasma Membrane Transport Proteins , Peripheral Nerve Injuries/genetics , Rats , Spinal Nerve Roots
16.
Nat Commun ; 11(1): 4870, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978384

ABSTRACT

Little is known about the physiology of latent Mycobacterium tuberculosis infection. We studied the mutational rates of 24 index tuberculosis (TB) cases and their latently infected household contacts who developed active TB up to 5.25 years later, as an indication of bacterial physiological state and possible generation times during latent TB infection in humans. Here we report that the rate of new mutations in the M. tuberculosis genome decline dramatically after two years of latent infection (two-sided p < 0.001, assuming an 18 h generation time equal to log phase M. tuberculosis, with latency period modeled as a continuous variable). Alternatively, assuming a fixed mutation rate, the generation time increases over the latency duration. Mutations indicative of oxidative stress do not increase with increasing latency duration suggesting a lack of host or bacterial derived mutational stress. These results suggest that M. tuberculosis enters a quiescent state during latency, decreasing the risk for mutational drug resistance and increasing generation time, but potentially increasing bacterial tolerance to drugs that target actively growing bacteria.


Subject(s)
Latent Tuberculosis/microbiology , Mutation Rate , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Adult , Brazil , DNA, Bacterial/isolation & purification , Female , Genome, Bacterial , Humans , Male , Mutation , Mycobacterium tuberculosis/pathogenicity , Oxidative Stress , Phylogeny , Polymorphism, Single Nucleotide , Time Factors , Young Adult
17.
Mol Cell Biol ; 41(1)2020 12 21.
Article in English | MEDLINE | ID: mdl-33139494

ABSTRACT

Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.


Subject(s)
Calcitriol/genetics , Intestinal Mucosa/metabolism , Intestines/physiology , Animals , Calcitriol/metabolism , Calcium/metabolism , Genomics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Membrane Calcium-Transporting ATPases/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/analogs & derivatives , Vitamin D/metabolism , Vitamin D/pharmacology
18.
Cell Chem Biol ; 27(2): 172-185.e11, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31711854

ABSTRACT

The triazine antitubercular JSF-2019 was of interest due to its in vitro efficacy and the nitro group shared with the clinically relevant delamanid and pretomanid. JSF-2019 undergoes activation requiring F420H2 and one or more nitroreductases in addition to Ddn. An intrabacterial drug metabolism (IBDM) platform was leveraged to demonstrate the system kinetics, evidencing formation of NO⋅ and a des-nitro metabolite. Structure-activity relationship studies focused on improving the solubility and mouse pharmacokinetic profile of JSF-2019 and culminated in JSF-2513, relying on the key introduction of a morpholine. Mechanistic studies with JSF-2019, JSF-2513, and other triazines stressed the significance of achieving potent in vitro efficacy via release of intrabacterial NO⋅ along with inhibition of InhA and, more generally, the FAS-II pathway. This study highlights the importance of probing IBDM and its potential to clarify mechanism of action, which in this case is a combination of NO⋅ release and InhA inhibition.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Triazines/chemistry , Animals , Antitubercular Agents/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Fatty Acid Synthases/antagonists & inhibitors , Fatty Acid Synthases/metabolism , Female , Half-Life , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism , Nitric Oxide/metabolism , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Triazines/pharmacokinetics , Triazines/pharmacology
19.
J Virol ; 82(21): 10709-23, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18715905

ABSTRACT

Lytic reactivation from latency is critical for the pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that the 691-amino-acid (aa) KSHV Rta transcriptional transactivator is necessary and sufficient to reactivate the virus from latency. Viral lytic cycle genes, including those expressing additional transactivators and putative oncogenes, are induced in a cascade fashion following Rta expression. In this study, we sought to define Rta's direct targets during reactivation by generating a conditionally nuclear variant of Rta. Wild-type Rta protein is constitutively localized to cell nuclei and contains two putative nuclear localization signals (NLSs). Only one NLS (NLS2; aa 516 to 530) was required for the nuclear localization of Rta, and it relocalized enhanced green fluorescent protein exclusively to cell nuclei. The results of analyses of Rta NLS mutants demonstrated that proper nuclear localization of Rta was required for transactivation and the stimulation of viral reactivation. RTA with NLS1 and NLS2 deleted was fused to the hormone-binding domain of the murine estrogen receptor to generate an Rta variant whose nuclear localization and ability to transactivate and induce reactivation were tightly controlled posttranslationally by the synthetic hormone tamoxifen. We used this strategy in KSHV-infected cells treated with protein synthesis inhibitors to identify direct transcriptional targets of Rta. Rta activated only eight KSHV genes in the absence of de novo protein synthesis. These direct transcriptional targets of Rta were transactivated to different levels and included the genes nut-1/PAN, ORF57/Mta, ORF56/Primase, K2/viral interleukin-6 (vIL-6), ORF37/SOX, K14/vOX, K9/vIRF1, and ORF52. Our data suggest that the induction of most of the KSHV lytic cycle genes requires additional protein expression after the expression of Rta.


Subject(s)
Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Trans-Activators/metabolism , Viral Proteins/biosynthesis , Virus Activation , Cell Nucleus/chemistry , Immediate-Early Proteins/genetics , Nuclear Localization Signals , Receptors, Estrogen/genetics , Recombinant Fusion Proteins , Selective Estrogen Receptor Modulators/pharmacology , Sequence Deletion , Tamoxifen/pharmacology , Trans-Activators/genetics
20.
Cancer Res ; 67(20): 9762-70, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17942906

ABSTRACT

Regulation of the MYC oncogene remains unclear. Using 10058-F4, a compound that inhibits MYC-MAX transcription factor, MYC protein and gene expression were down-regulated in Namalwa cells, a Burkitt lymphoma. Compound 10058-F4 decreased MYC mRNA (45%), MYC protein (50%), and cell growth (32%). MYC-MAX transcription factor was disrupted 24 h after treatment, resulting in transcriptional inhibition of target genes. Because microRNAs (miRNA) disrupt mRNA translation, let-7a, let-7b, and mir-98 were selected using bioinformatics for targeting MYC. Inhibition of MYC-MAX transcription factor with 10058-F4 increased levels of members of the let-7 family. In inhibited cells at 24 h, let-7a, let-7b, and mir-98 were induced 4.9-, 1.3-, and 2.4-fold, respectively, whereas mir-17-5p decreased 0.23-fold. These results were duplicated using microRNA multianalyte suspension array technology. Regulation of MYC mRNA by let-7a was confirmed by transfections with pre-let-7a. Overexpression of let-7a (190%) decreased Myc mRNA (70%) and protein (75%). Down-regulation of Myc protein and mRNA using siRNA MYC also elevated let-7a miRNA and decreased Myc gene expression. Inverse coordinate regulation of let-7a and mir-17-5p versus Myc mRNA by 10058-F4, pre-let-7a, or siRNA MYC suggested that both miRNAs are Myc-regulated. This supports previous results in lung and colon cancer where decreased levels of the let-7 family resulted in increased tumorigenicity. Here, pre-let-7a transfections led to down-regulation of expression of MYC and its target genes and antiproliferation in lymphoma cells. These findings with let-7a add to the complexity of MYC regulation and suggest that dysregulation of these miRNAs participates in the genesis and maintenance of the lymphoma phenotype in Burkitt lymphoma cells and other MYC-dysregulated cancers.


Subject(s)
Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/biosynthesis , Basic-Leucine Zipper Transcription Factors/genetics , Burkitt Lymphoma/metabolism , Cell Growth Processes/genetics , Down-Regulation , Gene Silencing , Genes, myc , Humans , MicroRNAs/biosynthesis , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/biosynthesis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL