ABSTRACT
Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.
ABSTRACT
Using a functional model of breast cancer heterogeneity, we previously showed that clonal sub-populations proficient at generating circulating tumour cells were not all equally capable of forming metastases at secondary sites. A combination of differential expression and focused in vitro and in vivo RNA interference screens revealed candidate drivers of metastasis that discriminated metastatic clones. Among these, asparagine synthetase expression in a patient's primary tumour was most strongly correlated with later metastatic relapse. Here we show that asparagine bioavailability strongly influences metastatic potential. Limiting asparagine by knockdown of asparagine synthetase, treatment with l-asparaginase, or dietary asparagine restriction reduces metastasis without affecting growth of the primary tumour, whereas increased dietary asparagine or enforced asparagine synthetase expression promotes metastatic progression. Altering asparagine availability in vitro strongly influences invasive potential, which is correlated with an effect on proteins that promote the epithelial-to-mesenchymal transition. This provides at least one potential mechanism for how the bioavailability of a single amino acid could regulate metastatic progression.
Subject(s)
Asparagine/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Neoplasm Metastasis/pathology , Animals , Asparaginase/metabolism , Asparaginase/therapeutic use , Asparagine/deficiency , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Biological Availability , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Male , Mice , Neoplasm Invasiveness/pathology , Prognosis , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA Interference , Reproducibility of ResultsABSTRACT
This corrects the article DOI: 10.1038/nature25465.
ABSTRACT
Chromosome segregation errors are an important source of genomic diversification that promote tumor heterogeneity and evolution. However, the aneuploidy induced by chromosome missegregations causes cellular stress at many levels, raising the question of how segregation errors can be tolerated in cancer. Additionally, we now know that chromosome segregation errors can lead to activation of the innate immune system, producing yet another challenge for chromosomally unstable cells. These observations imply that several liabilities are encountered during tumor evolution, which could potentially be exploited for cancer therapies. Here, we provide an overview of the different causes of segregation errors, their impact on cellular and genomic homeostasis, and discuss recent studies that help to understand how tolerance towards imbalanced karyotypes can be obtained.
Subject(s)
Chromosome Segregation , Genetic Variation , Genome , Adaptation, Biological , Aneuploidy , Chromosomal Instability , DNA Damage , Humans , Mitosis/genetics , Stress, PhysiologicalABSTRACT
Cancer metastasis requires that primary tumour cells evolve the capacity to intravasate into the lymphatic system or vasculature, and extravasate into and colonize secondary sites. Others have demonstrated that individual cells within complex populations show heterogeneity in their capacity to form secondary lesions. Here we develop a polyclonal mouse model of breast tumour heterogeneity, and show that distinct clones within a mixed population display specialization, for example, dominating the primary tumour, contributing to metastatic populations, or showing tropism for entering the lymphatic or vasculature systems. We correlate these stable properties to distinct gene expression profiles. Those clones that efficiently enter the vasculature express two secreted proteins, Serpine2 and Slpi, which were necessary and sufficient to program these cells for vascular mimicry. Our data indicate that these proteins not only drive the formation of extravascular networks but also ensure their perfusion by acting as anticoagulants. We propose that vascular mimicry drives the ability of some breast tumour cells to contribute to distant metastases while simultaneously satisfying a critical need of the primary tumour to be fed by the vasculature. Enforced expression of SERPINE2 and SLPI in human breast cancer cell lines also programmed them for vascular mimicry, and SERPINE2 and SLPI were overexpressed preferentially in human patients that had lung-metastatic relapse. Thus, these two secreted proteins, and the phenotype they promote, may be broadly relevant as drivers of metastatic progression in human cancer.
Subject(s)
Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Endothelium, Vascular/pathology , Neoplasm Metastasis/pathology , Animals , Anticoagulants/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Clone Cells/metabolism , Clone Cells/pathology , Disease Models, Animal , Disease Progression , Endothelium, Vascular/metabolism , Extracellular Matrix/metabolism , Female , Gene Expression Profiling , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Neoplasm Metastasis/genetics , Recurrence , Secretory Leukocyte Peptidase Inhibitor/metabolism , Sequence Analysis, DNA , Serpin E2/metabolismABSTRACT
DNA in micronuclei is likely to get damaged. When shattered DNA from micronuclei gets reincorporated into the primary nucleus, aberrant rearrangements can take place, a phenomenon referred to as chromothripsis. Here, we investigated how chromatids from micronuclei act in subsequent divisions and how this affects their fate. We observed that the majority of chromatids derived from micronuclei fail to establish a proper kinetochore in mitosis, which is associated with problems in chromosome alignment, segregation and spindle assembly checkpoint activation. Remarkably, we found that, upon their formation, micronuclei already display decreased levels of important kinetochore assembly factors. Importantly, these defects favour the exclusion of the micronucleus over the reintegration into the primary nucleus over several divisions. Interestingly, the defects observed in micronuclei are likely overcome once micronuclei are reincorporated into the primary nuclei, as they further propagate normally. We conclude that the formation of a separate small nuclear entity represents a mechanism for the cell to delay the stable propagation of excess chromosome(s) and/or damaged DNA, by inducing kinetochore defects.
Subject(s)
Chromosome Segregation , Chromosomes/genetics , Micronuclei, Chromosome-Defective , Chromatids/genetics , Chromatids/metabolism , Chromosomes/metabolism , DNA Damage , HEK293 Cells , Humans , MitosisABSTRACT
Aneuploidy and chromosomal instability are both commonly found in cancer. Chromosomal instability leads to karyotype heterogeneity in tumors and is associated with therapy resistance, metastasis and poor prognosis. It has been hypothesized that aneuploidy per se is sufficient to drive CIN, however due to limited models and heterogenous results, it has remained controversial which aspects of aneuploidy can drive CIN. In this study we systematically tested the impact of different types of aneuploidies on the induction of CIN. We generated a plethora of isogenic aneuploid clones harboring whole chromosome or segmental aneuploidies in human p53-deficient RPE-1 cells. We observed increased segregation errors in cells harboring trisomies that strongly correlated to the number of gained genes. Strikingly, we found that clones harboring only monosomies do not induce a CIN phenotype. Finally, we found that an initial chromosome breakage event and subsequent fusion can instigate breakage-fusion-bridge cycles. By investigating the impact of monosomies, trisomies and segmental aneuploidies on chromosomal instability we further deciphered the complex relationship between aneuploidy and CIN.
Subject(s)
Aneuploidy , Trisomy , Chromosomal Instability , Genetic Testing , Humans , Monosomy , Trisomy/geneticsABSTRACT
The presence of an abnormal karyotype has been shown to be profoundly detrimental at the cellular and organismal levels but is an overt hallmark of cancer. Aneuploidy can lead to p53 activation and thereby prevents proliferation, but the exact trigger for p53 activation has remained controversial. Here, we have used a system to induce aneuploidy in untransformed human cells to explore how cells deal with different segregation errors. We show that p53 is activated only in a subset of the cells with altered chromosome content. Importantly, we find that at least a subset of whole-chromosome aneuploidies can be propagated in p53-proficient cells, indicating that aneuploidy does not always lead to activation of p53. Finally, we demonstrate that propagation of structural aneuploidies (gain or loss of part of a chromosome) induced by segregation errors is limited to p53-deficient cells.