Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Kidney Int ; 100(2): 349-363, 2021 08.
Article in English | MEDLINE | ID: mdl-33930412

ABSTRACT

Enterohaemorrhagic E. coli cause major epidemics worldwide with significant organ damage and very high percentages of death. Due to the ability of enterohaemorrhagic E. coli to produce shiga toxin these bacteria damage the kidney leading to the hemolytic uremic syndrome. A therapy against this serious kidney disease has not been developed yet and the impact and mechanism of leukocyte activation and recruitment are unclear. Tissue-resident macrophages represent the main leukocyte population in the healthy kidney, but the role of this important cell population in shiga toxin-producing E. coli-hemolytic uremic syndrome is incompletely understood. Using state of the art microscopy and mass spectrometry imaging, our preclinical study demonstrated a phenotypic and functional switch of tissue-resident macrophages after disease induction in mice. Kidney macrophages produced the inflammatory molecule TNFα and depletion of tissue-resident macrophages via the CSF1 receptor abolished TNFα levels in the kidney and significantly diminished disease severity. Furthermore, macrophage depletion did not only attenuate endothelial damage and thrombocytopenia, but also activation of thrombocytes and neutrophils. Moreover, we observed that neutrophils infiltrated the kidney cortex and depletion of macrophages significantly reduced the recruitment of neutrophils and expression of the neutrophil-attracting chemokines CXCL1 and CXCL2. Intravital microscopy revealed that inhibition of CXCR2, the receptor for CXCL1 and CXCL2, significantly reduced the infiltration of neutrophils and reduced kidney injury. Thus, our study shows activation of tissue-resident macrophages during shiga toxin-producing E. coli-hemolytic uremic syndrome leading to the production of disease-promoting TNFα and CXCR2-dependent recruitment of neutrophils.


Subject(s)
Hemolytic-Uremic Syndrome , Shiga Toxin , Animals , Escherichia coli , Kidney , Macrophages , Mice , Neutrophil Infiltration
2.
Nat Commun ; 13(1): 156, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013174

ABSTRACT

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Histocompatibility Antigens Class I/genetics , Pancreatic Neoplasms/genetics , Progranulins/genetics , Tumor Escape/genetics , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Adenocarcinoma/therapy , Animals , Antibodies, Neutralizing/pharmacology , Antigens, Viral/genetics , Antigens, Viral/immunology , Autophagy/drug effects , Autophagy/genetics , Autophagy/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Cell Movement/drug effects , Cohort Studies , Cytotoxicity, Immunologic , Gene Expression , Glycoproteins/genetics , Glycoproteins/immunology , Histocompatibility Antigens Class I/immunology , Humans , Lymphocytic choriomeningitis virus/genetics , Lymphocytic choriomeningitis virus/immunology , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/therapy , Peptide Fragments/genetics , Peptide Fragments/immunology , Progranulins/antagonists & inhibitors , Progranulins/immunology , Proteolysis , Survival Analysis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Xenograft Model Antitumor Assays
3.
Blood Adv ; 5(5): 1259-1272, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33651101

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil proteome revealed increased expression of proteins associated with interferon signaling and decreased protein expression associated with granule composition and neutrophil migration. Functional experiments validated these findings by showing reduced levels of myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder was significantly reduced. These altered migratory properties of neutrophils were also associated with reduced expression of CD62L and CXCR4 and correlated with an increased incidence of infections in patients with CLL. In conclusion, this study describes a molecular signature of neutrophils through proteomic, bioinformatic, and functional analyses that are linked to a reduced migratory ability, potentially leading to increased bacterial infections in patients with CLL.


Subject(s)
Bacterial Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Computational Biology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , Neutrophils , Proteomics
4.
Front Oncol ; 11: 741993, 2021.
Article in English | MEDLINE | ID: mdl-34621681

ABSTRACT

BACKGROUND: PD-1-based immune checkpoint blockade (ICB) is a highly effective therapy in metastatic melanoma. However, 40-60% of patients are primarily resistant, with valid predictive biomarkers currently missing. This study investigated the digitally quantified tumor PD-L1 expression for ICB therapy outcome prediction. PATIENTS AND METHODS: Tumor tissues taken prior to PD-1-based ICB for unresectable metastatic disease were collected within the prospective multicenter Tissue Registry in Melanoma (TRIM). PD-L1 expression (clone 28-8; cut-off=5%) was determined by digital and physician quantification, and correlated with therapy outcome (best overall response, BOR; progression-free survival, PFS; overall survival, OS). RESULTS: Tissue samples from 156 patients were analyzed (anti-PD-1, n=115; anti-CTLA-4+anti-PD-1, n=41). Patients with PD-L1-positive tumors showed an improved response compared to patients with PD-L1-negative tumors, by digital (BOR 50.5% versus 32.2%; p=0.026) and physician (BOR 54.2% versus 36.6%; p=0.032) quantification. Tumor PD-L1 positivity was associated with a prolonged PFS and OS by either digital (PFS, 9.9 versus 4.6 months, p=0.021; OS, not reached versus 13.0 months, p=0.001) or physician (PFS, 10.6 versus 5.6 months, p=0.051; OS, not reached versus 15.6 months, p=0.011) quantification. Multivariable Cox regression revealed digital (PFS, HR=0.57, p=0.007; OS, HR=0.44, p=0.001) and physician (OS, HR=0.54, p=0.016) PD-L1 quantification as independent predictors of survival upon PD-1-based ICB. The combination of both methods identified a patient subgroup with particularly favorable therapy outcome (PFS, HR=0.53, p=0.011; OS, HR=0.47, p=0.008). CONCLUSION: Pre-treatment tumor PD-L1 positivity predicted a favorable outcome of PD-1-based ICB in melanoma. Herein, digital quantification was not inferior to physician quantification, and should be further validated for clinical use.

5.
Front Immunol ; 12: 711876, 2021.
Article in English | MEDLINE | ID: mdl-34659202

ABSTRACT

Cerebral malaria is a potentially lethal disease, which is caused by excessive inflammatory responses to Plasmodium parasites. Here we use a newly developed transgenic Plasmodium berghei ANKA (PbAAma1OVA) parasite that can be used to study parasite-specific T cell responses. Our present study demonstrates that Ifnar1-/- mice, which lack type I interferon receptor-dependent signaling, are protected from experimental cerebral malaria (ECM) when infected with this novel parasite. Although CD8+ T cell responses generated in the spleen are essential for the development of ECM, we measured comparable parasite-specific cytotoxic T cell responses in ECM-protected Ifnar1-/- mice and wild type mice suffering from ECM. Importantly, CD8+ T cells were increased in the spleens of ECM-protected Ifnar1-/- mice and the blood-brain-barrier remained intact. This was associated with elevated splenic levels of CCL5, a T cell and eosinophil chemotactic chemokine, which was mainly produced by eosinophils, and an increase in eosinophil numbers. Depletion of eosinophils enhanced CD8+ T cell infiltration into the brain and increased ECM induction in PbAAma1OVA-infected Ifnar1-/- mice. However, eosinophil-depletion did not reduce the CD8+ T cell population in the spleen or reduce splenic CCL5 concentrations. Our study demonstrates that eosinophils impact CD8+ T cell migration and proliferation during PbAAma1OVA-infection in Ifnar1-/- mice and thereby are contributing to the protection from ECM.


Subject(s)
Brain/immunology , Eosinophils/physiology , Malaria, Cerebral/immunology , Parasitemia/immunology , Plasmodium berghei , T-Lymphocytes/immunology , Animals , Animals, Outbred Strains , Anopheles/parasitology , Antigens, Protozoan/immunology , Cell Movement , Chemokine CCL5/analysis , Chemokine CCL5/physiology , Cytotoxicity, Immunologic , Female , Leukocyte Count , Malaria, Cerebral/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mosquito Vectors/parasitology , Organisms, Genetically Modified , Ovalbumin , Parasitemia/parasitology , Peptide Fragments , Plasmodium berghei/genetics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptors, CCR5/physiology , Spleen/chemistry , Spleen/immunology
6.
Mucosal Immunol ; 13(4): 702-714, 2020 07.
Article in English | MEDLINE | ID: mdl-32112048

ABSTRACT

The urothelium of the urinary bladder represents the first line of defense. However, uropathogenic E. coli (UPEC) damage the urothelium and cause acute bacterial infection. Here, we demonstrate the crosstalk between macrophages and the urothelium stimulating macrophage migration into the urothelium. Using spatial proteomics by MALDI-MSI and LC-MS/MS, a novel algorithm revealed the spatial activation and migration of macrophages. Analysis of the spatial proteome unravelled the coexpression of Myo9b and F4/80 in the infected urothelium, indicating that macrophages have entered the urothelium upon infection. Immunofluorescence microscopy additionally indicated that intraurothelial macrophages phagocytosed UPEC and eliminated neutrophils. Further analysis of the spatial proteome by MALDI-MSI showed strong expression of IL-6 in the urothelium and local inhibition of this molecule reduced macrophage migration into the urothelium and aggravated the infection. After IL-6 inhibition, the expression of matrix metalloproteinases and chemokines, such as CX3CL1 was reduced in the urothelium. Accordingly, macrophage migration into the urothelium was diminished in the absence of CX3CL1 signaling in Cx3cr1gfp/gfp mice. Conclusively, this study describes the crosstalk between the infected urothelium and macrophages through IL-6-induced CX3CL1 expression. Such crosstalk facilitates the relocation of macrophages into the urothelium and reduces bacterial burden in the urinary bladder.


Subject(s)
Cell Communication , Chemokine CX3CL1/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Proteomics , Urothelium/immunology , Urothelium/metabolism , Animals , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Immunohistochemistry , Macrophages/immunology , Mice , Proteomics/methods , Urinary Bladder/immunology , Urinary Bladder/metabolism , Urinary Bladder/microbiology , Urinary Tract Infections/etiology , Urinary Tract Infections/metabolism , Urinary Tract Infections/pathology , Urothelium/microbiology
8.
Nat Commun ; 10(1): 2312, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127113

ABSTRACT

Cardioprotection by salvage of the infarct-affected myocardium is an unmet yet highly desired therapeutic goal. To develop new dedicated therapies, experimental myocardial ischemia/reperfusion (I/R) injury would require methods to simultaneously characterize extent and localization of the damage and the ensuing inflammatory responses in whole hearts over time. Here we present a three-dimensional (3D), simultaneous quantitative investigation of key I/R injury-components by combining bleaching-augmented solvent-based non-toxic clearing (BALANCE) using ethyl cinnamate (ECi) with light sheet fluorescence microscopy. This allows structural analyses of fluorescence-labeled I/R hearts with exceptional detail. We discover and 3D-quantify distinguishable acute and late vascular I/R damage zones. These contain highly localized and spatially structured neutrophil infiltrates that are modulated upon cardiac healing. Our model demonstrates that these characteristic I/R injury patterns can detect the extent of damage even days after the ischemic index event hence allowing the investigation of long-term recovery and remodeling processes.


Subject(s)
Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Myocardial Reperfusion Injury/diagnostic imaging , Myocardium/pathology , Animals , Biopsy , Cinnamates/chemistry , Coronary Artery Bypass , Disease Models, Animal , Humans , Luminescent Agents/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence/methods , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/surgery , Myocardium/cytology , Myocardium/immunology , Neutrophils/immunology , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL