Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(42): e2400709121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39374387

ABSTRACT

Developmental and epileptic encephalopathies (DEE) are rare but devastating and largely intractable childhood epilepsies. Genetic variants in ARHGEF9, encoding a scaffolding protein important for the organization of the postsynaptic density of inhibitory synapses, are associated with DEE accompanied by complex neurological phenotypes. In a mouse model carrying a patient-derived ARHGEF9 variant associated with severe disease, we observed aggregation of postsynaptic proteins and loss of functional inhibitory synapses at the axon initial segment (AIS), altered axo-axonic synaptic inhibition, disrupted action potential generation, and complex seizure phenotypes consistent with clinical observations. These results illustrate diverse roles of ARHGEF9 that converge on regulation of the structure and function of the AIS, thus revealing a pathological mechanism for ARHGEF9-associated DEE. This unique example of a neuropathological condition associated with multiple AIS dysfunctions may inform strategies for treating neurodevelopmental diseases.


Subject(s)
Rho Guanine Nucleotide Exchange Factors , Animals , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Mice , Humans , Disease Models, Animal , Axon Initial Segment/metabolism , Synapses/metabolism , Synapses/pathology , Axons/metabolism , Axons/pathology , Epilepsy/genetics , Epilepsy/pathology , Male , Female , Action Potentials
2.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34520400

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease associated with unremitting fibroblast activation including fibroblast-to-myofibroblast transformation (FMT), migration, resistance to apoptotic clearance, and excessive deposition of extracellular matrix (ECM) proteins in the distal lung parenchyma. Aberrant activation of lung-developmental pathways is associated with severe fibrotic lung disease; however, the mechanisms through which these pathways activate fibroblasts in IPF remain unclear. Sry-box transcription factor 9 (Sox9) is a member of the high-mobility group box family of DNA-binding transcription factors that are selectively expressed by epithelial cell progenitors to modulate branching morphogenesis during lung development. We demonstrate that Sox9 is upregulated via MAPK/PI3K-dependent signaling and by the transcription factor Wilms' tumor 1 in distal lung-resident fibroblasts in IPF. Mechanistically, using fibroblast activation assays, we demonstrate that Sox9 functions as a positive regulator of FMT, migration, survival, and ECM production. Importantly, our in vivo studies demonstrate that fibroblast-specific deletion of Sox9 is sufficient to attenuate collagen deposition and improve lung function during TGF-α-induced pulmonary fibrosis. Using a mouse model of bleomycin-induced pulmonary fibrosis, we show that myofibroblast-specific Sox9 overexpression augments fibroblast activation and pulmonary fibrosis. Thus, Sox9 functions as a profibrotic transcription factor in activating fibroblasts, illustrating the potential utility of targeting Sox9 in IPF treatment.


Subject(s)
Fibroblasts/metabolism , Pulmonary Fibrosis/genetics , SOX9 Transcription Factor/metabolism , Animals , Cell Proliferation , Disease Models, Animal , Mice , Pulmonary Fibrosis/pathology , Signal Transduction , Transfection
3.
EMBO Mol Med ; 12(9): e12131, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32761869

ABSTRACT

Fibroblast activation including proliferation, survival, and ECM production is central to initiation and maintenance of fibrotic lesions in idiopathic pulmonary fibrosis (IPF). However, druggable molecules that target fibroblast activation remain limited. In this study, we show that multiple pro-fibrotic growth factors, including TGFα, CTGF, and IGF1, increase aurora kinase B (AURKB) expression and activity in fibroblasts. Mechanistically, we demonstrate that Wilms tumor 1 (WT1) is a key transcription factor that mediates TGFα-driven AURKB upregulation in fibroblasts. Importantly, we found that inhibition of AURKB expression or activity is sufficient to attenuate fibroblast activation. We show that fibrosis induced by TGFα is highly dependent on AURKB expression and treating TGFα mice with barasertib, an AURKB inhibitor, reverses fibroblast activation, and pulmonary fibrosis. Barasertib similarly attenuated fibrosis in the bleomycin model of pulmonary fibrosis. Together, our preclinical studies provide important proof-of-concept that demonstrate barasertib as a possible intervention therapy for IPF.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Animals , Aurora Kinase B , Fibroblasts/pathology , Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL