Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(6): 963-978, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37196654

ABSTRACT

De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Animals , Facies , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Drosophila , Intellectual Disability/pathology , Jumonji Domain-Containing Histone Demethylases/genetics
2.
Hum Mol Genet ; 32(9): 1429-1438, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36440975

ABSTRACT

Pathogenic variants in ANKRD11 or microdeletions at 16q24.3 are the cause of KBG syndrome (KBGS), a neurodevelopmental syndrome characterized by intellectual disability, dental and skeletal anomalies, and characteristic facies. The ANKRD11 gene encodes the ankyrin repeat-containing protein 11A transcriptional regulator, which is expressed in the brain and implicated in neural development. Syndromic conditions caused by pathogenic variants in epigenetic regulatory genes show unique patterns of DNA methylation (DNAm) in peripheral blood, termed DNAm signatures. Given ANKRD11's role in chromatin modification, we tested whether pathogenic ANKRD11 variants underlying KBGS are associated with a DNAm signature. We profiled whole-blood DNAm in 21 individuals with ANKRD11 variants, 2 individuals with microdeletions at 16q24.3 and 28 typically developing individuals, using Illumina's Infinium EPIC array. We identified 95 differentially methylated CpG sites that distinguished individuals with KBGS and pathogenic variants in ANKRD11 (n = 14) from typically developing controls (n = 28). This DNAm signature was then validated in an independent cohort of seven individuals with KBGS and pathogenic ANKRD11 variants. We generated a machine learning model from the KBGS DNAm signature and classified the DNAm profiles of four individuals with variants of uncertain significance (VUS) in ANKRD11. We identified an intermediate classification score for an inherited missense variant transmitted from a clinically unaffected mother to her affected child. In conclusion, we show that the DNAm profiles of two individuals with 16q24.3 microdeletions were indistinguishable from the DNAm profiles of individuals with pathogenic variants in ANKRD11, and we demonstrate the diagnostic utility of the new KBGS signature by classifying the DNAm profiles of individuals with VUS in ANKRD11.


Subject(s)
Abnormalities, Multiple , Repressor Proteins , Child , Female , Humans , Abnormalities, Multiple/blood , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/blood , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Chromosome Deletion , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Facies , Intellectual Disability/blood , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Machine Learning , Mutation , Phenotype , Repressor Proteins/genetics , Tooth Abnormalities/blood , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Transcription Factors/genetics
3.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884529

ABSTRACT

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

4.
Nature ; 557(7706): 564-569, 2018 05.
Article in English | MEDLINE | ID: mdl-29769720

ABSTRACT

The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Extremities/embryology , Intercellular Signaling Peptides and Proteins/metabolism , Limb Deformities, Congenital/genetics , Receptors, G-Protein-Coupled/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , DNA-Binding Proteins/metabolism , Female , Fibroblasts , Gene Knockout Techniques , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/metabolism , Phenotype , Receptors, G-Protein-Coupled/deficiency , Ubiquitin-Protein Ligases/metabolism , Xenopus/genetics
5.
Nature ; 561(7722): E7, 2018 09.
Article in English | MEDLINE | ID: mdl-29977062

ABSTRACT

In this Letter, the surname of author Lena Vlaminck was misspelled 'Vlaeminck'. In addition, author Kris Vleminckx should have been associated with affiliation 16 (Center for Medical Genetics, Ghent University, Ghent, Belgium). These have been corrected online.

6.
Clin Genet ; 104(1): 100-106, 2023 07.
Article in English | MEDLINE | ID: mdl-37121912

ABSTRACT

Spondyloepimetaphyseal dysplasia (SEMD), RPL13-related is caused by heterozygous variants in RPL13, which encodes the ribosomal protein eL13, a component of the 60S human ribosomal subunit. Here, we describe the clinical and radiological evolution of 11 individuals, 7 children and 4 adults, from 6 families. Some of the skeletal features improved during the course of this condition, whilst others worsened. We describe for the first time "corner fractures" as a feature of this dysplasia which as with other dysplasias disappear with age. In addition, we review the heights and skeletal anomalies of these reported here and previously in a total of 25 individuals from 15 families. In this study, six different RPL13 variants were identified, five of which were novel. All were located in the apparently hotspot region, located in intron 5 and exon 6. Splicing assays were performed for two of the three previously undescribed splicing variants. Until now, all splice variants have occurred in the intron 5 splice donor site, incorporating an additional 18 amino acids to the mutant protein. Here, we report the first variant in intron 5 splice acceptor site which generates two aberrant transcripts, deleting the first three and four amino acids encoded by exon 6. Thus, this study doubles the number of SEMD-RPL13-related cases and variants reported to date and describes unreported age-related clinical and radiological features.


Subject(s)
Osteochondrodysplasias , Ribosomal Proteins , Child , Adult , Humans , Ribosomal Proteins/genetics , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Radiography , Exons , Amino Acids , Neoplasm Proteins
7.
Ann Neurol ; 92(2): 304-321, 2022 08.
Article in English | MEDLINE | ID: mdl-35471564

ABSTRACT

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Subject(s)
Apyrase , Intellectual Disability , Spastic Paraplegia, Hereditary , White Matter , Apyrase/genetics , Dysarthria , Humans , Intellectual Disability/genetics , Mutation/genetics , Paraplegia/genetics , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics , White Matter/diagnostic imaging , White Matter/pathology
8.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564437

ABSTRACT

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Subject(s)
Molecular Chaperones/genetics , Mutation , Osteogenesis Imperfecta/genetics , Animals , Female , Genes, Recessive , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Male , Mice , Pedigree , Phenotype , Wnt Signaling Pathway
10.
Am J Hum Genet ; 100(2): 281-296, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28132690

ABSTRACT

EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.


Subject(s)
Musculoskeletal Abnormalities/genetics , N-Acetylglucosaminyltransferases/genetics , Osteochondrodysplasias/genetics , Alleles , Cell Line , Cell Line, Tumor , Chondroitin/blood , Chondroitin/urine , DNA Copy Number Variations , Genome-Wide Association Study , Glycosaminoglycans/metabolism , Humans , Musculoskeletal Abnormalities/diagnosis , Mutation, Missense , Osteochondrodysplasias/diagnosis , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics
11.
Genet Med ; 22(11): 1838-1850, 2020 11.
Article in English | MEDLINE | ID: mdl-32694869

ABSTRACT

PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.


Subject(s)
Blepharophimosis , Hypotrichosis , Intellectual Disability , Facies , Foot Deformities, Congenital , Humans , Intellectual Disability/genetics , Phenotype , Transcription Factors/genetics
12.
Am J Med Genet A ; 182(9): 2129-2132, 2020 09.
Article in English | MEDLINE | ID: mdl-32627382

ABSTRACT

YY1 mutations cause Gabriele-de Vries syndrome, a recently described condition involving cognitive impairment, facial dysmorphism and intrauterine growth restriction. Movement disorders were reported in 5/10 cases of the original series, but no detailed description was provided. Here we present a 21-year-old woman with a mild intellectual deficit, facial dysmorphism and a complex movement disorder including an action tremor, cerebellar ataxia, dystonia, and partial ocular apraxia as the presenting and most striking feature. Whole-exome sequencing revealed a novel heterozygous de novo mutation in YY1 [NM: 003403.4 (YY1): c.907 T > C; p.(Cys303Arg)], classified as pathogenic according to the ACMG guidelines.


Subject(s)
Movement Disorders/genetics , Neurodevelopmental Disorders/genetics , YY1 Transcription Factor/genetics , Child , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/pathology , Movement Disorders/pathology , Neurodevelopmental Disorders/pathology , Phenotype , Exome Sequencing
13.
Genet Med ; 21(12): 2734-2743, 2019 12.
Article in English | MEDLINE | ID: mdl-31263216

ABSTRACT

PURPOSE: We observed four individuals in two unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature. The phenotype precisely matched that of an individual of Azorean descent published in 1986 by Liberfarb and coworkers. METHODS: Patients underwent specialized clinical examinations (including ophthalmological, audiological, orthopedic, radiological, and developmental assessment). Exome and targeted sequencing was performed on selected individuals. Minigene constructs were assessed by quantitative polymerase chain reaction (qPCR) and Sanger sequencing. RESULTS: Affected individuals shared a 3.36-Mb region of autozygosity on chromosome 22q12.2, including a 10-bp deletion (NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon of the PISD (phosphatidylserine decarboxylase) gene. Sequencing of PISD from paraffin-embedded tissue from the 1986 case revealed the identical homozygous variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. CONCLUSION: We have identified the genetic etiology of the Liberfarb syndrome, affecting brain, eye, ear, bone, and connective tissue. Our work documents the migration of a rare Portuguese founder variant to two continents and highlights the link between phospholipid metabolism and bone formation, sensory defects, and cerebral development, while raising the possibility of therapeutic phospholipid replacement.


Subject(s)
Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Adolescent , Adult , Brazil , Exome/genetics , Female , Genotype , HEK293 Cells , Hearing Loss, Sensorineural/genetics , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Musculoskeletal Abnormalities/genetics , Osteochondrodysplasias/genetics , Pedigree , Phenotype , Portugal , Retinal Degeneration/genetics , Syndrome , Young Adult
14.
Clin Endocrinol (Oxf) ; 88(6): 820-829, 2018 06.
Article in English | MEDLINE | ID: mdl-29464738

ABSTRACT

OBJECTIVE: Mutations in the aggrecan gene (ACAN) have been identified in two autosomal dominant skeletal dysplasias, spondyloepiphyseal dysplasia, Kimberley type (SEDK), and osteochondritis dissecans, as well as in a severe recessive dysplasia, spondyloepimetaphyseal dysplasia, aggrecan type. Next-generation sequencing (NGS) has aided the identification of heterozygous ACAN mutations in individuals with short stature, minor skeletal defects and mild facial dysmorphisms, some of whom have advanced bone age (BA), poor pubertal spurt and early growth cessation as well as precocious osteoarthritis. DESIGN AND METHODS: This study involves clinical and genetic characterization of 16 probands with heterozygous ACAN variants, 14 with short stature and mild skeletal defects (group 1) and two with SEDK (group 2). Subsequently, we reviewed the literature to determine the frequency of the different clinical characteristics in ACAN-positive individuals. RESULTS: A total of 16 ACAN variants were located throughout the gene, six pathogenic mutations and 10 variants of unknown significance (VUS). Interestingly, brachydactyly was observed in all probands. Probands from group 1 with a pathogenic mutation tended to be shorter, and 60% had an advanced BA compared to 0% in those with a VUS. A higher incidence of coxa valga was observed in individuals with a VUS (37% vs 0%). Nevertheless, other features were present at similar frequencies. CONCLUSIONS: ACAN should be considered as a candidate gene in patients with short stature and minor skeletal defects, particularly those with brachydactyly, and in patients with spondyloepiphyseal dysplasia. It is also important to note that advanced BA and osteoarticular complications are not obligatory conditions for aggrecanopathies/aggrecan-associated dysplasias.


Subject(s)
Aggrecans/genetics , Brachydactyly/genetics , Adolescent , Child , Child, Preschool , Female , Heterozygote , Humans , Infant , Male , Mutation/genetics
15.
Am J Med Genet A ; 176(3): 668-675, 2018 03.
Article in English | MEDLINE | ID: mdl-29341480

ABSTRACT

The cutis laxa syndromes are multisystem disorders that share loose redundant inelastic and wrinkled skin as a common hallmark clinical feature. The underlying molecular defects are heterogeneous and 13 different genes have been involved until now, all of them being implicated in elastic fiber assembly. We provide here molecular and clinical characterization of three unrelated patients with a very rare phenotype associating cutis laxa, facial dysmorphism, severe growth retardation, hyperostotic skeletal dysplasia, and intellectual disability. This disorder called Lenz-Majewski syndrome (LMS) is associated with gain of function mutations in PTDSS1, encoding an enzyme involved in phospholipid biosynthesis. This report illustrates that LMS is an unequivocal cutis laxa syndrome and expands the clinical and molecular spectrum of this group of disorders. In the neonatal period, brachydactyly and facial dysmorphism are two early distinctive signs, later followed by intellectual disability and hyperostotic skeletal dysplasia with severe dwarfism allowing differentiation of this condition from other cutis laxa phenotypes. Further studies are needed to understand the link between PTDSS1 and extra cellular matrix assembly.


Subject(s)
Cutis Laxa/diagnosis , Cutis Laxa/genetics , Hyperostosis/diagnosis , Hyperostosis/genetics , Mutation , Nitrogenous Group Transferases/genetics , Phenotype , Adult , Alleles , Child , Child, Preschool , Exons , Facies , Female , Genetic Association Studies , Genotype , Humans , Male , Radiography
16.
Hum Mutat ; 38(12): 1731-1739, 2017 12.
Article in English | MEDLINE | ID: mdl-28869677

ABSTRACT

The SH2 domain containing inositol phosphatase 2 (SHIP2) dephosphorylates PI(3,4,5)P3 to generate PI(3,4)P2, a lipid involved in the control of cell migration and adhesion. The INPPL1 gene that encodes SHIP2 has been found to be mutated in several cases of opsismodysplasia (OPS), a rare autosomal recessive chondrodysplasia characterized by growth plate defects and delayed bone maturation. Reported mutations often result in premature stop codons or missense mutations in SHIP2 catalytic domain. SHIP2 biochemical properties are known from studies in cancer cells; its role in endochondral ossification is unknown. Here, we report two novel mutations in the INPPL1 gene and show that cell migration is very much decreased in fibroblasts derived from three OPS patients as compared with control individuals. In contrast, cell adhesion on fibronectin is increased in OPS fibroblasts. An inhibitory effect on migration was also observed when normal fibroblasts were incubated in the presence of a SHIP2 competitive inhibitor. We conclude that both migration and adhesion are very much disrupted in OPS-derived fibroblasts. It is suggested that signaling events linked to migration and particularly to adhesion, which are lost in OPS patients, would prevent normal endochondral ossification.


Subject(s)
Cell Adhesion/genetics , Cell Movement/genetics , Osteochondrodysplasias/enzymology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Signal Transduction , Codon, Nonsense , Female , Fibroblasts/metabolism , Genes, Reporter , Homozygote , Humans , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Phenotype , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Pregnancy
17.
Am J Hum Genet ; 95(5): 611-21, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25439728

ABSTRACT

Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.


Subject(s)
Cerebellar Ataxia/genetics , Intellectual Disability/genetics , Sorting Nexins/genetics , Base Sequence , Cerebellar Ataxia/pathology , Chromosome Mapping , Codon, Nonsense/genetics , Female , Fibroblasts/ultrastructure , Gene Regulatory Networks/genetics , Genes, Recessive/genetics , Humans , Intellectual Disability/pathology , Male , Microscopy, Electron , Molecular Sequence Data , Pedigree , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
19.
Am J Med Genet C Semin Med Genet ; 166C(3): 302-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25169058

ABSTRACT

Nicolaides-Baraitser syndrome (NCBRS) is an intellectual disability (ID)/multiple congenital anomalies syndrome caused by non-truncating mutations in the ATPase region of SMARCA2, which codes for one of the two alternative catalytic subunits of the BAF chromatin remodeling complex. We analyzed 61 molecularly confirmed cases, including all previously reported patients (n = 47) and 14 additional unpublished individuals. NCBRS is clinically and genetically homogeneous. The cardinal features (ID, short stature, microcephaly, typical face, sparse hair, brachydactyly, prominent interphalangeal joints, behavioral problems and seizures), are almost universally present. There is variability however, as ID can range from severe to mild, and sparse hair may be present only in certain age groups. There may be a correlation between the severity of the ID and presence of seizures, absent speech, short stature and microcephaly. SMARCA2 mutations causing NCBRS are likely to act through a dominant-negative effect. There may be some genotype-phenotype correlations (mutations at domain VI with severe ID and seizures; mutations affecting residues Pro883, Leu946, and Ala1201 with mild phenotypes) but numbers are still too small to draw definitive conclusions.


Subject(s)
Foot Deformities, Congenital/etiology , Hypotrichosis/etiology , Intellectual Disability/etiology , Mutation , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Epilepsy/genetics , Face/abnormalities , Facies , Foot Deformities, Congenital/diagnosis , Foot Deformities, Congenital/genetics , Genetic Association Studies , Hair/abnormalities , Humans , Hypotrichosis/diagnosis , Hypotrichosis/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Skin Abnormalities/genetics , Young Adult
20.
Am J Med Genet A ; 164A(1): 10-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24501761

ABSTRACT

We report on two Portuguese sisters with a very similar phenotype characterized by severe intellectual disability, absent speech, relative macrocephaly, coarse face, cerebellar hypotrophy, and severe ataxia. Additional common features include increased thickness of the cranial vault, delayed dental eruption, talipes equino-varus, clinodactyly, and camptodactyly of the fifth finger. The older sister has retinal dystrophy and the younger sister has short stature. Their parents are consanguineous. We suggest this condition constitutes a previously unreported autosomal recessive entity.


Subject(s)
Cerebellum/abnormalities , Facial Bones/abnormalities , Intellectual Disability/diagnosis , Megalencephaly/diagnosis , Nervous System Malformations/diagnosis , Siblings , Abnormalities, Multiple , Brain/pathology , Child , Consanguinity , Developmental Disabilities/diagnosis , Facies , Female , Hand Deformities, Congenital/diagnostic imaging , Hand Deformities, Congenital/pathology , Humans , Magnetic Resonance Imaging , Pedigree , Phenotype , Radiography , Skull/diagnostic imaging , Skull/pathology , Syndrome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL