Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Geochem Trans ; 24(1): 1, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37326927

ABSTRACT

Microbiological weathering of coarse residue deposit (CRD) kimberlite produced by the Venetia Diamond Mine, Limpopo, South Africa enhanced mineral carbonation relative to untreated material. Cultures of photosynthetically enriched biofilm produced maximal carbonation conditions when mixed with kimberlite and incubated under near surface conditions. Interestingly, mineral carbonation also occurred in the dark, under water-saturated conditions. The examination of mineralized biofilms in ca. 150 µm-thick-sections using light microscopy, X-ray fluorescence microscopy (XFM) and backscatter electron-scanning electron microscopy-energy dispersive x-ray spectrometry demonstrated that microbiological weathering aided in producing secondary calcium/magnesium carbonates on silicate grain boundaries. Calcium/magnesium sulphate(s) precipitated under vadose conditions demonstrating that evaporites formed upon drying. In this system, mineral carbonation was only observed in regions possessing bacteria, preserved within carbonate as cemented microcolonies. 16S rDNA molecular diversity of bacteria in kimberlite and in natural biofilms growing on kimberlite were dominated by Proteobacteria that are active in nitrogen, phosphorus and sulphur cycling. Cyanobacteria based enrichment cultures provided with nitrogen & phosphorus (nutrients) to enhance growth, possessed increased diversity of bacteria, with Proteobacteria re-establishing themselves as the dominant bacterial lineage when incubated under dark, vadose conditions consistent with natural kimberlite. Overall, 16S rDNA analyses revealed that weathered kimberlite hosts a diverse microbiome consistent with soils, metal cycling and hydrocarbon degradation. Enhanced weathering and carbonate-cemented microcolonies demonstrate that microorganisms are key to mineral carbonation of kimberlite.

2.
Environ Sci Technol ; 57(33): 12325-12338, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37574860

ABSTRACT

Organic matter (OM) formation and stabilization are critical processes in the eco-engineered pedogenesis of Fe ore tailings, but the underlying mechanisms are unclear. The present 12 month microcosm study has adopted nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based scanning transmission X-ray microscopy (STXM) techniques to investigate OM formation, molecular signature, and stabilization in tailings at micro- and nanometer scales. In this system, microbial processing of exogenous isotopically labeled OM demonstrated that 13C labeled glucose and 13C/15N labeled plant biomass were decomposed, regenerated, and associated with Fe-rich minerals in a heterogeneous pattern in tailings. Particularly, when tailings were amended with plant biomass, the 15N-rich microbially derived OM was generated and bound to minerals to form an internal organo-mineral association, facilitating further OM stabilization. The organo-mineral associations were primarily underpinned by interactions of carboxyl, amide, aromatic, and/or aliphatic groups with weathered mineral products derived from biotite-like minerals in fresh tailings (i.e., with Fe2+ and Fe3+) or with Fe3+ oxyhydroxides in aged tailings. The study revealed microbial OM generation and subsequent organo-mineral association in Fe ore tailings at the submicrometer scale during early stages of eco-engineered pedogenesis, providing a basis for the development of microbial based technologies toward tailings' ecological rehabilitation.


Subject(s)
Nitrogen , Soil , Soil/chemistry , Minerals/chemistry , Biomass , Iron
3.
Environ Sci Technol ; 57(51): 21779-21790, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091466

ABSTRACT

Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.


Subject(s)
Ferric Compounds , Mycorrhizae , Ferric Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Fourier Analysis , Minerals/chemistry , Soil/chemistry , Iron
4.
Environ Sci Technol ; 57(51): 21744-21756, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38085882

ABSTRACT

Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.


Subject(s)
Iron Compounds , Minerals , Bacteria , Sulfur , Oxidation-Reduction , Iron , Soil , Hydrogen-Ion Concentration
5.
Proc Natl Acad Sci U S A ; 117(31): 18347-18354, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32694202

ABSTRACT

Novel biotechnologies are required to remediate iron ore mines and address the increasing number of tailings (mine waste) dam collapses worldwide. In this study, we aimed to accelerate iron reduction and oxidation to stabilize an artificial slope. An open-air bioreactor was inoculated with a mixed consortium of microorganisms capable of reducing iron. Fluid from the bioreactor was allowed to overflow onto the artificial slope. Carbon sources from the bioreactor fluid promoted the growth of a surface biofilm within the artificial slope, which naturally aggregated the crushed grains. The biofilms provided an organic framework for the nucleation of iron oxide minerals. Iron-rich biocements stabilized the artificial slope and were significantly more resistant to physical deformation compared with the control experiment. These biotechnologies highlight the potential to develop strategies for mine remediation and waste stabilization by accelerating the biogeochemical cycling of iron.


Subject(s)
Iron , Mining , Soil/chemistry , Bacteria/metabolism , Biofilms , Environmental Monitoring/methods , Soil Microbiology , Waste Management/methods
6.
J Environ Manage ; 316: 115216, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35550960

ABSTRACT

In treating mine-impacted waters using sulfate-reducing bacteria (SRB), metal inhibition and substrate selection are important factors affecting the efficiency of the bioprocess. This work investigated the role of the substrate (i.e. lactate, formate, glycerol and glucose) on Ni inhibition to SRB with sulfate-reducing activity tests at initial pH 5, 7 and 9 and 100 mg/L of Ni. Results indicated that the type of substrate was a significant factor affecting Ni inhibition in SRB, which was the most negligible in the lactate system, followed by glycerol, glucose, and formate. Although less significant, Ni inhibition also varied with the pH, leading for instance, to a reduction of 77% in the sulfate reducing activity for the formate system, but only of 28% for lactate at pH 5. The added substrate also influenced the precipitation kinetics and the characteristics of the precipitates, reaching Ni precipitation extents above 95%, except for glucose (83.2%).


Subject(s)
Desulfovibrio , Glycerol , Formates , Glucose , Lactates , Sulfates
7.
Environ Sci Technol ; 55(12): 8020-8034, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34043324

ABSTRACT

The neutralization of strongly alkaline pH conditions and acceleration of mineral weathering in alkaline Fe ore tailings have been identified as key prerequisites for eco-engineering tailings-soil formation for sustainable mine site rehabilitation. Acidithiobacillus ferrooxidans has great potential in neutralizing alkaline pH and accelerating primary mineral weathering in the tailings but little information is available. This study aimed to investigate the colonization of A. ferrooxidans in alkaline Fe ore tailings and its role in elemental sulfur (S0) oxidation, tailings neutralization, and Fe-bearing mineral weathering through a microcosm experiment. The effects of biological S0 oxidation on the weathering of alkaline Fe ore tailings were examined via various microspectroscopic analyses. It is found that (1) the A. ferrooxidans inoculum combined with the S0 amendment rapidly neutralized the alkaline Fe ore tailings; (2) A. ferrooxidans activities induced Fe-bearing primary mineral (e.g., biotite) weathering and secondary mineral (e.g., ferrihydrite and jarosite) formation; and (3) the association between bacterial cells and tailings minerals were likely facilitated by extracellular polymeric substances (EPS). The behavior and biogeochemical functionality of A. ferrooxidans in the tailings provide a fundamental basis for developing microbial-based technologies toward eco-engineering soil formation in Fe ore tailings.


Subject(s)
Acidithiobacillus , Iron , Bacteria , Hydrogen-Ion Concentration , Minerals , Oxidation-Reduction , Sulfur
8.
Environ Sci Technol ; 55(19): 13045-13060, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34565140

ABSTRACT

Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.


Subject(s)
Microbiota , Soil Pollutants , Minerals , Rhizosphere , Soil , Soil Pollutants/analysis
9.
Environ Sci Technol ; 53(6): 3225-3237, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30786208

ABSTRACT

The stability and longevity of carbonate minerals make them an ideal sink for surplus atmospheric carbon dioxide. Biogenic magnesium carbonate mineral precipitation from the magnesium-rich tailings generated by many mining operations could offset net mining greenhouse gas emissions, while simultaneously giving value to mine waste products. In this investigation, cyanobacteria in a wetland bioreactor enabled the precipitation of magnesite (MgCO3), hydromagnesite [Mg5(CO3)4(OH)2·4H2O], and dypingite [Mg5(CO3)4(OH)2·5H2O] from a synthetic wastewater comparable in chemistry to what is produced by acid leaching of ultramafic mine tailings. These precipitates occurred as micrometer-scale mineral grains and microcrystalline carbonate coatings that entombed filamentous cyanobacteria. This provides the first laboratory demonstration of low temperature, biogenic magnesite precipitation for carbon sequestration purposes. These findings demonstrate the importance of extracellular polymeric substances in microbially enabled carbonate mineral nucleation. Fluid composition was monitored to determine carbon sequestration rates. The results demonstrate that up to 238 t of CO2 could be stored per hectare of wetland/year if this method of carbon dioxide sequestration was implemented at an ultramafic mine tailing storage facility. The abundance of tailings available for carbonation and the anticipated global implementation of carbon pricing make this method of mineral carbonation worth further investigation.


Subject(s)
Carbon Sequestration , Magnesium , Carbon , Carbon Dioxide , Carbonates , Minerals
10.
Environ Sci Technol ; 53(23): 13720-13731, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31697487

ABSTRACT

The formation of water-stable aggregates in finely textured and polymineral magnetite Fe ore tailings is one of the critical processes in eco-engineering tailings into soil-like substrates as a new way to rehabilitate the tailings. Organic matter (OM) amendment and plant colonization are considered to be effective in enhancing water-stable aggregation, but the underlying mechanisms have not yet been elucidated. The present study aimed to characterize detailed changes in physicochemistry, Fe-bearing mineralogy, and organo-mineral interactions in magnetite Fe ore tailings subject to the combined treatments of OM amendment and plant colonization, by employing various microspectroscopic methods, including synchrotron-based X-ray absorption fine structure spectroscopy and nanoscale secondary ion mass spectroscopy. The results indicated that OM amendment and plant colonization neutralized the tailings' alkaline pH and facilitated water-stable aggregate formation. The resultant aggregates were consequences of ligand-promoted bioweathering of primary Fe-bearing minerals (mainly biotite-like minerals) and the formation of secondary Fe-rich mineral gels. Especially, the sequestration of OM (rich in carboxyl, aromatic, and/or carbonyl C) by Fe-rich minerals via ligand-exchange and/or hydrophobic interactions contributed to the aggregation. These findings have uncovered the processes and mechanisms of water-stable aggregate formation driven by OM amendment and plant colonization in alkaline Fe ore tailings, thus providing important basis for eco-engineered pedogenesis in the tailings.


Subject(s)
Carbon Sequestration , Ferrosoferric Oxide , Minerals , Soil , Water
11.
Can J Microbiol ; 64(9): 629-637, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30169128

ABSTRACT

Growth of two dissimilatory sulfate-reducing bacteria, Desulfosporosinus orientis (gram-positive) and Desulfovibrio desulfuricans (gram-negative), in a chemically defined culture medium resulted in similar growth rates (doubling times for each culture = 2.8 h) and comparable rates of H2S generation (D. orientis = 0.19 nmol/L S2- per cell per h; D. desulfuricans = 0.12 nmol/L S2- per cell per h). Transmission electron microscopy of whole mounts and thin sections revealed that the iron sulfide mineral precipitates produced by the two cultures were morphologically different. The D. orientis culture flocculated, with the minerals occurring as subhedral plate-like precipitates, which nucleated on the cell wall during exponential growth producing extensive mineral aggregates following cell autolysis and endospore release. In contrast, the D. desulfuricans culture produced fine-grained colloidal or platy iron sulfide precipitates primarily within the bulk solution. Mineral analysis by scanning electron microscopy - energy dispersive spectroscopy indicated that neither culture promoted advanced mineral development beyond a 1:1 Fe:S stoichiometry. This analysis did not detect pyrite (FeS2). The average Fe:S ratios were 1 : 1.09 ± 0.03 at 24 h and 1 : 1.08 ± 0.03 at 72 h for D. orientis and 1 : 1.05 ± 0.02 at 24 h and 1 : 1.09 ± 0.07 at 72 h for D. desulfuricans. The formation of "biogenic" iron sulfides by dissimilatory sulfate-reducing bacteria is influenced by bacterial cell surface structure, chemistry, and growth strategy, i.e., mineral aggregation occurred with cell autolysis of the gram-positive bacterium.


Subject(s)
Desulfovibrio desulfuricans/metabolism , Iron/metabolism , Minerals/chemistry , Peptococcaceae/metabolism , Sulfides/metabolism , Bacteriolysis , Cell Wall/ultrastructure , Iron/chemistry , Minerals/metabolism , Oxidation-Reduction , Sulfates/metabolism , Sulfides/chemistry
12.
Environ Sci Technol ; 50(3): 1419-27, 2016 02 02.
Article in English | MEDLINE | ID: mdl-26720600

ABSTRACT

A microbially accelerated process for the precipitation of carbonate minerals was implemented in a sample of serpentinite mine tailings collected from the abandoned Woodsreef Asbestos Mine in New South Wales, Australia as a strategy to sequester atmospheric CO2 while also stabilizing the tailings. Tailings were leached using sulfuric acid in reaction columns and subsequently inoculated with an alkalinity-generating cyanobacteria-dominated microbial consortium that was enriched from pit waters at the Woodsreef Mine. Leaching conditions that dissolved 14% of the magnesium from the serpentinite tailings while maintaining circumneutral pH (1800 ppm, pH 6.3) were employed in the experiment. The mineralogy, water chemistry, and microbial colonization of the columns were characterized following the experiment. Micro-X-ray diffraction was used to identify carbonate precipitates as dypingite [Mg5(CO3)4(OH)2·5H2O] and hydromagnesite [Mg5(CO3)4(OH)2·4H2O] with minor nesquehonite (MgCO3·3H2O). Scanning electron microscopy revealed that carbonate mineral precipitates form directly on the filamentous cyanobacteria. These findings demonstrate the ability of these organisms to generate localized supersaturating microenvironments of high concentrations of adsorbed magnesium and photosynthetically generated carbonate ions while also acting as nucleation sites for carbonate precipitation. This study is the first step toward implementing in situ carbon sequestration in serpentinite mine tailings via microbial carbonate precipitation reactions.


Subject(s)
Carbonates/chemistry , Carbonates/metabolism , Cyanobacteria/metabolism , Mining , Water/chemistry , Asbestos , Carbon Sequestration , Environmental Monitoring , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Magnesium , Microscopy, Electron, Scanning , New South Wales , Photosynthesis , X-Ray Diffraction
13.
Nat Chem Biol ; 9(4): 241-3, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23377039

ABSTRACT

Microorganisms produce and secrete secondary metabolites to assist in their survival. We report that the gold resident bacterium Delftia acidovorans produces a secondary metabolite that protects from soluble gold through the generation of solid gold forms. This finding is the first demonstration that a secreted metabolite can protect against toxic gold and cause gold biomineralization.


Subject(s)
Bacterial Proteins/metabolism , Coordination Complexes/metabolism , Delftia acidovorans/metabolism , Gold/metabolism , Metal Nanoparticles/chemistry , Peptides/metabolism , Bacterial Proteins/genetics , Coordination Complexes/chemistry , Cupriavidus/genetics , Cupriavidus/metabolism , Delftia acidovorans/genetics , Magnetic Resonance Spectroscopy , Peptides/genetics , Solubility
14.
Environ Sci Technol ; 48(16): 9142-51, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25072950

ABSTRACT

A cyanobacteria dominated consortium collected from an alkaline wetland located near Atlin, British Columbia, Canada accelerated the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] in a linear flow-through experimental model wetland. The concentration of magnesium decreased rapidly within 2 m of the inflow point of the 10-m-long (∼1.5 m(2)) bioreactor. The change in water chemistry was monitored over two months along the length of the channel. Carbonate mineralization was associated with extra-cellular polymeric substances in the nutrient-rich upstream portion of the bioreactor, while the lower part of the system, which lacked essential nutrients, did not exhibit any hydromagnesite precipitation. A mass balance calculation using the water chemistry data produced a carbon sequestration rate of 33.34 t of C/ha per year. Amendment of the nutrient deficiency would intuitively allow for increased carbonation activity. Optimization of this process will have application as a sustainable mining practice by mediating magnesium carbonate precipitation in ultramafic mine tailings storage facilities.


Subject(s)
Bioreactors , Carbon Sequestration , Cyanobacteria/metabolism , Magnesium/metabolism , British Columbia , Industrial Waste , Mining , Photosynthesis , Water/chemistry
15.
Nano Lett ; 13(6): 2407-11, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23701405

ABSTRACT

The study of electrical transport in biomolecular materials is critical to our fundamental understanding of physiology and to the development of practical bioelectronics applications. In this study, we investigated the electronic transport characteristics of Shewanella oneidensis MR-1 nanowires by conducting-probe atomic force microscopy (CP-AFM) and by constructing field-effect transistors (FETs) based on individual S. oneidensis nanowires. Here we show that S. oneidensis nanowires exhibit p-type, tunable electronic behavior with a field-effect mobility on the order of 10(-1) cm(2)/(V s), comparable to devices based on synthetic organic semiconductors. This study opens up opportunities to use such bacterial nanowires as a new semiconducting biomaterial for making bioelectronics and to enhance the power output of microbial fuel cells through engineering the interfaces between metallic electrodes and bacterial nanowires.


Subject(s)
Nanowires , Shewanella/physiology , Microscopy, Atomic Force , Microscopy, Electron, Scanning
16.
Front Chem ; 12: 1349020, 2024.
Article in English | MEDLINE | ID: mdl-38389729

ABSTRACT

Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.

17.
Sci Total Environ ; 927: 171919, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554963

ABSTRACT

The catalytic role of Acidithiobacillus ferrooxidans (A. ferrooxidans) in iron biooxidation is pivotal in the formation of Acid Mine Drainage (AMD), which poses a significant threat to the environment. To control AMD generation, treatments with low-molecular-weight organic acids are being studied, yet their exact mechanisms are unclear. In this study, AMD materials, organic acids, and molecular methods were employed to gain a deeper understanding of the inhibitory effects of low-molecular-weight organic acids on the biooxidation of iron by A. ferrooxidans. The inhibition experiments of A. ferrooxidans on the oxidation of Fe2+ showed that to attain a 90 % inhibition efficacy within 72 h, the minimum concentrations required for formic acid, acetic acid, propionic acid, and lactic acid are 0.5, 6, 4, and 10 mmol/L, respectively. Bacterial imaging illustrated the detrimental effects of these organic acids on the cell envelope structure. This includes severe damage to the outer membrane, particularly from formic and acetic acids, which also caused cell wall damage. Coupled with alterations in the types and quantities of protein, carbohydrate, and nucleic acid content in extracellular polymeric substances (EPS), indicate the mechanisms underlying these inhibitory treatments. Transcriptomic analysis revealed interference of these organic acids with crucial metabolic pathways, particularly those related to energy metabolism. These findings establish a comprehensive theoretical basis for understanding the inhibition of A. ferrooxidans' biooxidation by low-molecular-weight organic acids, offering a novel opportunity to effectively mitigate the generation of AMD at its source.


Subject(s)
Acidithiobacillus , Iron , Oxidation-Reduction , Propionates , Acidithiobacillus/metabolism , Acidithiobacillus/drug effects , Iron/metabolism , Mining , Formates/metabolism , Acetic Acid/metabolism
18.
Sci Total Environ ; 915: 170119, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38232828

ABSTRACT

The Carajás plateaus in Brazil host endemic epilithic vegetation ("campo rupestre") on top of ironstone duricrusts, known as canga. This capping rock is primarily composed of iron(III) oxide minerals and forms a physically resistant horizon. Field observations reveal an intimate interaction between canga's surface and two native sedges (Rhynchospora barbata and Bulbostylis cangae). These observations suggest that certain plants contribute to the biogeochemical cycling of iron. Iron dissolution features at the root-rock interface were characterised using synchrotron-based techniques, Raman spectroscopy and scanning electron microscopy. These microscale characterisations indicate that iron is preferentially leached in the rhizosphere, enriching the comparatively insoluble aluminium around root channels. Oxalic acid and other exudates were detected in active root channels, signifying ligand-controlled iron oxide dissolution, likely driven by the plants' requirements for goethite-associated nutrients such as phosphorus. The excess iron not uptaken by the plant can reprecipitate in and around roots, line root channels and cement detrital fragments in the soil crust at the base of the plants. The reprecipitation of iron is significant as it provides a continuously forming cement, which makes canga horizons a 'self-healing' cover and contributes to them being the world's most stable continuously exposed land surfaces. Aluminium hydroxide precipitates ("gibbsite cutans") were also detected, coating some of the root cavities, often in alternating layers with goethite. This alternating pattern may correspond with oscillating oxygen concentrations in the rhizosphere. Microbial lineages known to contain iron-reducing bacteria were identified in the sedge rhizospheric microbiome and likely contribute to the reductive dissolution of iron(III) oxides within canga. Drying or percolation of oxygenated water to these anaerobic niches have led to iron mineralisation of biofilms, detected in many root channels. This study sheds light on plants' direct and indirect involvement in canga evolution, with possible implications for revegetation and surface restoration of iron mine sites.


Subject(s)
Iron Compounds , Iron , Minerals , Rhizosphere , Iron/chemistry , Ferric Compounds/analysis , Aluminum/analysis , Plants , Oxides , Plant Roots/microbiology , Soil/chemistry
19.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593609

ABSTRACT

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Subject(s)
Azurin , Models, Molecular , Kinetics , Electrochemistry , Azurin/chemistry , Azurin/genetics , Azurin/metabolism , Actinobacteria/chemistry , Thermoplasmales/chemistry , Electron Spin Resonance Spectroscopy , Protein Structure, Tertiary , Iron/metabolism , Oxidation-Reduction , Biotechnology , Protein Stability , Conserved Sequence/genetics
20.
Proc Natl Acad Sci U S A ; 107(42): 18127-31, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20937892

ABSTRACT

Bacterial nanowires are extracellular appendages that have been suggested as pathways for electron transport in phylogenetically diverse microorganisms, including dissimilatory metal-reducing bacteria and photosynthetic cyanobacteria. However, there has been no evidence presented to demonstrate electron transport along the length of bacterial nanowires. Here we report electron transport measurements along individually addressed bacterial nanowires derived from electron-acceptor-limited cultures of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. Transport along the bacterial nanowires was independently evaluated by two techniques: (i) nanofabricated electrodes patterned on top of individual nanowires, and (ii) conducting probe atomic force microscopy at various points along a single nanowire bridging a metallic electrode and the conductive atomic force microscopy tip. The S. oneidensis MR-1 nanowires were found to be electrically conductive along micrometer-length scales with electron transport rates up to 10(9)/s at 100 mV of applied bias and a measured resistivity on the order of 1 Ω·cm. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA produce appendages that are morphologically consistent with bacterial nanowires, but were found to be nonconductive. The measurements reported here allow for bacterial nanowires to serve as a viable microbial strategy for extracellular electron transport.


Subject(s)
Electricity , Shewanella/physiology , Electrodes , Microscopy, Atomic Force , Nanowires
SELECTION OF CITATIONS
SEARCH DETAIL