Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell ; 178(5): 1036-1038, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442397

ABSTRACT

In this issue of Cell, Casellas and colleagues provide insights into the structural and functional aspects of the mammalian multi-subunit Mediator complex, a conserved and essential transcriptional coregulator. Combining cryo-EM, genetic, and genomic analyses, the work sheds light on Mediator's mode of action as a functional bridge between enhancers and promoters.


Subject(s)
Mediator Complex , Animals , Promoter Regions, Genetic
2.
Nat Rev Mol Cell Biol ; 19(4): 262-274, 2018 04.
Article in English | MEDLINE | ID: mdl-29209056

ABSTRACT

Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.


Subject(s)
Mediator Complex/genetics , Mediator Complex/metabolism , Transcription, Genetic , Animals , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Evolution, Molecular , Gene Expression Regulation , Humans , Mediator Complex/chemistry , Models, Biological , Models, Genetic , Mycoses/genetics , Mycoses/metabolism , Mycoses/therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Nuclear Pore/genetics , Nuclear Pore/metabolism , RNA Polymerase II/metabolism , Regulatory Sequences, Nucleic Acid , Signal Transduction , Transcription Initiation, Genetic , Transcriptional Activation
3.
Mol Cell ; 81(1): 183-197.e6, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33278361

ABSTRACT

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.


Subject(s)
Chromosomes, Fungal/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromosomes, Fungal/genetics , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
4.
Genome Res ; 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35738899

ABSTRACT

Mediator is a conserved coregulator playing a key role in RNA polymerase (Pol) II transcription. Mediator also links transcription and nucleotide excision repair (NER) via a direct contact with Rad2/ERCC5(XPG) endonuclease. In this work, we analyzed the genome-wide distribution of Rad26/ERCC6(CSB) and Rad1-Rad10/ERCC4(XPF)-ERCC1, addressing the question of a potential link of these proteins with Mediator and Pol II in yeast Saccharomyces cerevisiae Our genomic analyses reveal that Rad1-Rad10 and Rad26 are present on the yeast genome in the absence of genotoxic stress, especially at highly transcribed regions, with Rad26 binding strongly correlating with that of Pol II. Moreover, we show that Rad1-Rad10 and Rad26 colocalize with Mediator at intergenic regions and physically interact with this complex. Using kin28 TFIIH mutant, we found that Mediator stabilization on core promoters leads to an increase in Rad1-Rad10 chromatin binding, whereas Rad26 occupancy follows mainly a decrease in Pol II transcription. Combined with multivariate analyses, our results show the relationships between Rad1-Rad10, Rad26, Mediator, and Pol II, modulated by the changes in binding dynamics of Mediator and Pol II transcription. In conclusion, we extend the Mediator link to Rad1-Rad10 and Rad26 NER proteins and reveal important differences in their dependence on Mediator and Pol II. Rad2 is the most dependent on Mediator, followed by Rad1-Rad10, whereas Rad26 is the most closely related to Pol II. Our work thus contributes to new concepts of the functional interplay between transcription and DNA repair machineries, which are relevant for human diseases including cancer and XP/CS syndromes.

5.
PLoS Comput Biol ; 20(1): e1011799, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38266035

ABSTRACT

In eukaryotic cells, the one-dimensional DNA molecules need to be tightly packaged into the spatially constraining nucleus. Folding is achieved on its lowest level by wrapping the DNA around nucleosomes. Their arrangement regulates other nuclear processes, such as transcription and DNA repair. Despite strong efforts to study nucleosome positioning using Next Generation Sequencing (NGS) data, the mechanism of their collective arrangement along the gene body remains poorly understood. Here, we classify nucleosome distributions of protein-coding genes in Saccharomyces cerevisiae according to their profile similarity and analyse their differences using functional Principal Component Analysis. By decomposing the NGS signals into their main descriptive functions, we compared wild type and chromatin remodeler-deficient strains, keeping position-specific details preserved whilst considering the nucleosome arrangement as a whole. A correlation analysis with other genomic properties, such as gene size and length of the upstream Nucleosome Depleted Region (NDR), identified key factors that influence the nucleosome distribution. We reveal that the RSC chromatin remodeler-which is responsible for NDR maintenance-is indispensable for decoupling nucleosome arrangement within the gene from positioning outside, which interfere in rsc8-depleted conditions. Moreover, nucleosome profiles in chd1Δ strains displayed a clear correlation with RNA polymerase II presence, whereas wild type cells did not indicate a noticeable interdependence. We propose that RSC is pivotal for global nucleosome organisation, whilst Chd1 plays a key role for maintaining local arrangement.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Nucleosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , RNA Polymerase II/metabolism , DNA , Chromatin Assembly and Disassembly/genetics
6.
Trends Genet ; 37(3): 224-234, 2021 03.
Article in English | MEDLINE | ID: mdl-32921511

ABSTRACT

Dysfunctions of nuclear processes including transcription and DNA repair lead to severe human diseases. Gaining an understanding of how these processes operate in the crowded context of chromatin can be particularly challenging. Mediator is a large multiprotein complex conserved in eukaryotes with a key coactivator role in the regulation of RNA polymerase (Pol) II transcription. Despite intensive studies, the molecular mechanisms underlying Mediator function remain to be fully understood. Novel findings have provided insights into the relationship between Mediator and chromatin architecture, revealed its role in connecting transcription with DNA repair and proposed an emerging mechanism of phase separation involving Mediator condensates. Recent developments in the field suggest multiple functions of Mediator going beyond transcriptional processes per se that would explain its involvement in various human pathologies.


Subject(s)
Chromatin/genetics , Mediator Complex/genetics , RNA Polymerase II/genetics , Transcription, Genetic/genetics , Chromatin/ultrastructure , DNA Repair/genetics , Humans , Mediator Complex/ultrastructure , RNA Polymerase II/ultrastructure
7.
Genes Dev ; 30(18): 2119-2132, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27688401

ABSTRACT

Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts.


Subject(s)
Mediator Complex/metabolism , Promoter Regions, Genetic/physiology , Saccharomyces cerevisiae/physiology , Transcription Factor TFIIB/metabolism , Chromatin/metabolism , Mediator Complex/genetics , Mutation , Protein Binding/genetics , Protein Multimerization/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
PLoS Comput Biol ; 18(9): e1010488, 2022 09.
Article in English | MEDLINE | ID: mdl-36094963

ABSTRACT

The great advances of sequencing technologies allow the in vivo measurement of nuclear processes-such as DNA repair after UV exposure-over entire cell populations. However, data sets usually contain only a few samples over several hours, missing possibly important information in between time points. We developed a data-driven approach to analyse CPD repair kinetics over time in Saccharomyces cerevisiae. In contrast to other studies that consider sequencing signals as an average behaviour, we understand them as the superposition of signals from independent cells. By motivating repair as a stochastic process, we derive a minimal model for which the parameters can be conveniently estimated. We correlate repair parameters to a variety of genomic features that are assumed to influence repair, including transcription rate and nucleosome density. The clearest link was found for the transcription unit length, which has been unreported for budding yeast to our knowledge. The framework hence allows a comprehensive analysis of nuclear processes on a population scale.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , DNA Damage/genetics , DNA Repair , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ultraviolet Rays
9.
Nucleic Acids Res ; 47(17): 8988-9004, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31299084

ABSTRACT

Transcription and maintenance of genome integrity are fundamental cellular functions. Deregulation of transcription and defects in DNA repair lead to serious pathologies. The Mediator complex links RNA polymerase (Pol) II transcription and nucleotide excision repair via Rad2/XPG endonuclease. However, the functional interplay between Rad2/XPG, Mediator and Pol II remains to be determined. In this study, we investigated their functional dynamics using genomic and genetic approaches. In a mutant affected in Pol II phosphorylation leading to Mediator stabilization on core promoters, Rad2 genome-wide occupancy shifts towards core promoters following that of Mediator, but decreases on transcribed regions together with Pol II. Specific Mediator mutations increase UV sensitivity, reduce Rad2 recruitment to transcribed regions, lead to uncoupling of Rad2, Mediator and Pol II and to colethality with deletion of Rpb9 Pol II subunit involved in transcription-coupled repair. We provide new insights into the functional interplay between Rad2, Mediator and Pol II and propose that dynamic interactions with Mediator and Pol II are involved in Rad2 loading to the chromatin. Our work contributes to the understanding of the complex link between transcription and DNA repair machineries, dysfunction of which leads to severe diseases.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Mediator Complex/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , DNA Repair , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Genome, Fungal , Humans , Mediator Complex/genetics , Models, Molecular , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , RNA Polymerase II/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
10.
Genes Dev ; 27(23): 2549-62, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24298055

ABSTRACT

Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.


Subject(s)
DNA Repair/physiology , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , Mediator Complex/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , DNA Repair/genetics , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Endonucleases/genetics , Gene Deletion , Genome , Humans , Mediator Complex/genetics , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Radiation Tolerance/genetics , Saccharomyces cerevisiae/radiation effects , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Ultraviolet Rays
11.
Nucleic Acids Res ; 43(19): 9214-31, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26240385

ABSTRACT

Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway.


Subject(s)
Mediator Complex/physiology , Saccharomyces cerevisiae Proteins/genetics , Transcription Initiation, Genetic , Chromatin/metabolism , Galactokinase/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , Mediator Complex/genetics , Mutation , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , TATA-Box Binding Protein/metabolism , Transcription Factor TFIIH/metabolism
12.
Mol Cell ; 31(3): 337-46, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18691966

ABSTRACT

In vitro, without Mediator, the association of general transcription factors (GTF) and RNA polymerase II (Pol II) in preinitiation complexes (PIC) occurs in an orderly fashion. In this work, we explore the in vivo function of Mediator in GTF recruitment to PIC. A direct interaction between Med11 Mediator head subunit and Rad3 TFIIH subunit was identified. We explored the significance of this interaction and those of Med11 with head module subunits Med17 and Med22 and found that impairing these interactions could differentially affect the recruitment of TFIIH, TFIIE, and Pol II in the PIC. A med11 mutation that altered promoter occupancy by the TFIIK kinase module of TFIIH genome-wide also reduced Pol II CTD serine 5 phosphorylation. We conclude that the Mediator head module plays a critical role in TFIIH and TFIIE recruitment to the PIC. We identify steps in PIC formation that suggest a branched assembly pathway.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription Factor TFIIH/metabolism , Transcription, Genetic , Centromere/metabolism , Chromatin Immunoprecipitation , DNA Helicases/metabolism , Gene Expression Regulation, Fungal , Genome, Fungal/genetics , Mediator Complex , Models, Biological , Mutation/genetics , Phosphorylation , Phosphotransferases/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Protein Structure, Tertiary , Protein Subunits/metabolism , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors, TFII/metabolism
13.
Nucleic Acids Res ; 40(1): 270-83, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21911356

ABSTRACT

RNA polymerase (Pol) III synthesizes the tRNAs, the 5S ribosomal RNA and a small number of untranslated RNAs. In vitro, it also transcribes short interspersed nuclear elements (SINEs). We investigated the distribution of Pol III and its associated transcription factors on the genome of mouse embryonic stem cells using a highly specific tandem ChIP-Seq method. Only a subset of the annotated class III genes was bound and thus transcribed. A few hundred SINEs were associated with the Pol III transcription machinery. We observed that Pol III and its transcription factors were present at 30 unannotated sites on the mouse genome, only one of which was conserved in human. An RNA was associated with >80% of these regions. More than 2200 regions bound by TFIIIC transcription factor were devoid of Pol III. These sites were associated with cohesins and often located close to CTCF-binding sites, suggesting that TFIIIC might cooperate with these factors to organize the chromatin. We also investigated the genome-wide distribution of the ubiquitous TFIIS variant, TCEA1. We found that, as in Saccharomyces cerevisiae, TFIIS is associated with class III genes and also with SINEs suggesting that TFIIS is a Pol III transcription factor in mammals.


Subject(s)
Embryonic Stem Cells/metabolism , RNA Polymerase III/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/metabolism , Animals , Binding Sites , Butyrate Response Factor 1 , Cell Line , Chromatin/metabolism , Chromatin Immunoprecipitation/methods , Genome , Mice , Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , RNA, Small Nuclear/genetics , RNA, Transfer/genetics , RNA-Binding Proteins/metabolism , Sequence Analysis, DNA , Short Interspersed Nucleotide Elements , Transcription Factor TFIIIB/metabolism , Transcription Factors, TFIII/metabolism
14.
NAR Genom Bioinform ; 6(4): lqae144, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39450311

ABSTRACT

The development of next-generation sequencing (NGS) technologies paved the way for studying the spatiotemporal coordination of cellular processes along the genome. However, data sets are commonly limited to a few time points, and missing information needs to be interpolated. Most models assume that the studied dynamics are similar between individual cells, so that a homogeneous cell culture can be represented by a population-wide average. Here, we demonstrate that this understanding can be inappropriate. We developed a thought experiment-which we call the NGS chess problem-in which we compare the temporal sequencing data analysis to observing a superimposed picture of many independent games of chess at a time. The analysis of the spatiotemporal kinetics advocates for a new methodology that considers DNA-particle interactions in each cell independently even for a homogeneous cell population.

15.
DNA Repair (Amst) ; 141: 103714, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943827

ABSTRACT

The Mediator complex is an essential coregulator of RNA polymerase II transcription. More recent developments suggest Mediator functions as a link between transcription regulation, genome organisation and DNA repair mechanisms including nucleotide excision repair, base excision repair, and homologous recombination. Dysfunctions of these processes are frequently associated with human pathologies, and growing evidence shows Mediator involvement in cancers, neurological, metabolic and infectious diseases. The detailed deciphering of molecular mechanisms of Mediator functions, using interdisciplinary approaches in different biological models and considering all functions of this complex, will contribute to our understanding of relevant human diseases.


Subject(s)
DNA Repair , Mediator Complex , Transcription, Genetic , Humans , Mediator Complex/metabolism , Mediator Complex/genetics , Neoplasms/genetics , Neoplasms/metabolism , Gene Expression Regulation , RNA Polymerase II/metabolism , Animals
16.
Cell Rep ; 42(5): 112465, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37133993

ABSTRACT

Chromatin organization is crucial for transcriptional regulation in eukaryotes. Mediator is an essential and conserved co-activator thought to act in concert with chromatin regulators. However, it remains largely unknown how their functions are coordinated. Here, we provide evidence in the yeast Saccharomyces cerevisiae that Mediator establishes physical contact with RSC (Remodels the Structure of Chromatin), a conserved and essential chromatin remodeling complex that is crucial for nucleosome-depleted region (NDR) formation. We determine the role of Mediator-RSC interaction in their chromatin binding, nucleosome occupancy, and transcription on a genomic scale. Mediator and RSC co-localize on wide NDRs of promoter regions, and specific Mediator mutations affect nucleosome eviction and TSS-associated +1 nucleosome stability. This work shows that Mediator contributes to RSC remodeling function to shape NDRs and maintain chromatin organization on promoter regions. It will help in our understanding of transcriptional regulation in the chromatin context relevant for severe diseases.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Nucleosomes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Chromatin Assembly and Disassembly , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Promoter Regions, Genetic/genetics
17.
EMBO J ; 27(18): 2411-21, 2008 Sep 17.
Article in English | MEDLINE | ID: mdl-18716630

ABSTRACT

The yeast URA2 gene, encoding the rate-limiting enzyme of UTP biosynthesis, is transcriptionally activated by UTP shortage. In contrast to other genes of the UTP pathway, this activation is not governed by the Ppr1 activator. Moreover, it is not due to an increased recruitment of RNA polymerase II at the URA2 promoter, but to its much more effective progression beyond the URA2 mRNA start site(s). Regulatory mutants constitutively expressing URA2 resulted from cis-acting deletions upstream of the transcription initiator region, or from amino-acid replacements altering the RNA polymerase II Switch 1 loop domain, such as rpb1-L1397S. These two mutation classes allowed RNA polymerase to progress downstream of the URA2 mRNA start site(s). rpb1-L1397S had similar effects on IMD2 (IMP dehydrogenase) and URA8 (CTP synthase), and thus specifically activated the rate-limiting steps of UTP, GTP and CTP biosynthesis. These data suggest that the Switch 1 loop of RNA polymerase II, located at the downstream end of the transcription bubble, may operate as a specific sensor of the nucleoside triphosphates available for transcription.


Subject(s)
Aspartate Carbamoyltransferase/genetics , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Gene Expression Regulation , Mutation , Nucleosides/chemistry , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/genetics , Aspartate Carbamoyltransferase/metabolism , Binding Sites , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , IMP Dehydrogenase/genetics , Models, Biological , Promoter Regions, Genetic , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic
18.
Lab Chip ; 21(12): 2407-2416, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33960358

ABSTRACT

Mutations in DNA have large-ranging consequences, from evolution to disease. Many mechanisms contribute to mutational processes such as dysfunctions in DNA repair pathways and exogenous or endogenous mutagen exposures. Model organisms and mutation accumulation (MA) experiments are indispensable to study mutagenesis. Classical MA is, however, time consuming and laborious. To fill the need for more efficient approaches to characterize mutational profiles, we have developed an innovative microfluidic-based system that automatizes MA culturing over many generations in budding yeast. This unique experimental tool, coupled with high-throughput sequencing, reduces by one order of magnitude the time required for genome-wide measurements of mutational profiles, while also parallelizing and simplifying the cell culture. To validate our approach, we performed microfluidic MA experiments on two different genetic backgrounds, a wild-type strain and a base-excision DNA repair ung1 mutant characterized by a well-defined mutational profile. We show that the microfluidic device allows for mutation accumulation comparable to the traditional method on plate. Our approach thus paves the way to massively-parallel MA experiments with minimal human intervention that can be used to investigate mutational processes at the origin of human diseases and to identify mutagenic compounds relevant for medical and environmental research.


Subject(s)
Mutation Accumulation , Saccharomyces cerevisiae , Humans , Microfluidics , Mutagenesis , Mutation , Saccharomyces cerevisiae/genetics
19.
Mol Cell Biol ; 26(13): 4920-33, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16782880

ABSTRACT

RSC is an essential, multisubunit chromatin remodeling complex. We show here that the Rsc4 subunit of RSC interacted via its C terminus with Rpb5, a conserved subunit shared by all three nuclear RNA polymerases (Pol). Furthermore, the RSC complex coimmunoprecipitated with all three RNA polymerases. Mutations in the C terminus of Rsc4 conferred a thermosensitive phenotype and the loss of interaction with Rpb5. Certain thermosensitive rpb5 mutations were lethal in combination with an rsc4 mutation, supporting the physiological significance of the interaction. Pol II transcription of ca. 12% of the yeast genome was increased or decreased twofold or more in a rsc4 C-terminal mutant. The transcription of the Pol III-transcribed genes SNR6 and RPR1 was also reduced, in agreement with the observed localization of RSC near many class III genes. Rsc4 C-terminal mutations did not alter the stability or assembly of the RSC complex, suggesting an impact on Rsc4 function. Strikingly, a C-terminal mutation of Rsc4 did not impair RSC recruitment to the RSC-responsive genes DUT1 and SMX3 but rather changed the chromatin accessibility of DNases to their promoter regions, suggesting that the altered transcription of DUT1 and SMX3 was the consequence of altered chromatin remodeling.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , DNA-Directed RNA Polymerases/metabolism , Fungal Proteins/metabolism , Yeasts/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mutation , Protein Subunits/metabolism , Transcription, Genetic , Yeasts/enzymology , Yeasts/genetics
20.
Transcription ; 8(5): 328-342, 2017.
Article in English | MEDLINE | ID: mdl-28841352

ABSTRACT

Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.


Subject(s)
Mediator Complex/metabolism , Transcription Initiation, Genetic , Animals , Chromatin/genetics , Chromatin/metabolism , Humans , RNA Polymerase II/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL