Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Inorg Chem ; 29(5): 519-529, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009790

ABSTRACT

Lapachol (2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione) is a 1,4-naphthoquinone-derived natural product that presents numerous bioactivities and was shown to have cytotoxic effects against several human tumor cells. Indium(III) complexes with a variety of ligands also exhibit antineoplastic activity. Indium(III) complexes [In(lap)Cl2].4H2O (1), [In(lap)2Cl(Et3N)] (2), [In(lap)3]·2H2O (3) [In(lap)(bipy)Cl2] bipy = 2,2'-bipyridine (4) and [In(lap)(phen)Cl2] phen = 1,10-phenanthroline (5) were obtained with 2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione (lapachol). Crystal structure determinations for (4) and (5) revealed that the indium(III) center is coordinated to two O atoms from lapachol, two N atoms from 1,10-phenanthroline or 2,2'-bipyridine, and two chloride anions, in a distorted octahedral geometry. Although both complexes (4) and (5) interacted with CT-DNA in vitro by an intercalative mode, only 5 exhibited cytotoxicity against MCF-7 and MDA-MB breast tumor cells. 1,10-phenanthroline and complex (5) presented cytotoxic effects against MCF-7 and MDA-MB cells, with complex (5) being threefold more active than 1,10-phenanthroline on MCF-7 cells. In addition, complex (5) significantly reduced the formation of MDA-MB-231 colonies in a clonogenicity assay. The foregoing results suggest that further studies on the cytotoxic effects and cellular targets of complex (5) are of utmost relevance.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , DNA , Indium , Naphthoquinones , Humans , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Indium/chemistry , Indium/pharmacology , DNA/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cell Line, Tumor , Female , Drug Screening Assays, Antitumor , Crystallography, X-Ray , MCF-7 Cells , Models, Molecular , Molecular Structure
2.
Exp Parasitol ; 247: 108490, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36809831

ABSTRACT

The discovery and development of new drugs for the treatment of Chagas disease is urgent due to the high toxicity and low cure efficacy, mainly during the chronic phase of this disease. Other chemotherapeutic approaches for Chagas disease treatment are being researched and require screening assays suitable for evaluating the effectivity of new biologically active compounds. This study aims to evaluate a functional assay using the internalization of epimastigotes forms of Trypanosoma cruzi by human peripheral blood leukocytes from healthy volunteers and analyses by flow cytometry of cytotoxicity, anti-T. cruzi activity, and immunomodulatory effect of benznidazole, ravuconazole, and posaconazole. The culture supernatant was used to measure cytokines (IL-1-ß, IL-6, INF-γ, TNF and IL-10) and chemokines (MCP-1/CCL2, CCL5/RANTES and CXCL8/IL-8). The data showed a reduction in the internalization of T. cruzi epimastigote forms treated with ravuconazole, demonstrating its potential anti-T. cruzi activity. In addition, an increased amount of IL-10 and TNF cytokines was observed in the supernatant of cultures upon the addition of the drug, mainly IL-10 in the presence of benznidazole, ravuconazole and posaconazole, and TNF in the presence of ravuconazole and posaconazole. Moreover, the results revealed a decrease in the MCP-1/CCL2 index in cultures in the presence of benznidazole, ravuconazole, and posaconazole. A decrease in the CCL5/RANTES and CXCL8/IL-8 index in cultures with BZ, when compared to the culture without drugs, was also observed. In conclusion, the innovative functional test proposed in this study may be a valuable tool as a confirmatory test for selecting promising compounds identified in prospecting programs for new drugs for Chagas disease treatment.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Humans , Interleukin-10 , Interleukin-8 , Flow Cytometry , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Chagas Disease/drug therapy , Cytokines , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
3.
Mol Divers ; 26(4): 1969-1982, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34482477

ABSTRACT

Giardiasis is a neglected disease, and there is a need for new molecules with less side effects and better activity against resistant strains. This work describes the evaluation of the giardicidal activity of thymol derivatives produced from the Morita-Baylis-Hillman reaction. Thymol acrylate was reacted with different aromatic aldehydes, using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalyst. Eleven adducts (8 of them unpublished) with yields between 58 and 80% were obtained from this reaction, which were adequately characterized. The in silico prediction showed theoretical bioavailability after oral administration as well as antiparasitic activity against Giardia lamblia. Compound 4 showed better biological activity against G. lamblia. In addition to presenting antigiardial activity 24 times better than thymol, this MBHA was obtained in a short reaction time (3 h) with a yield (80%) superior to the other investigated molecules. The molecule was more active than the precursors (thymol and MBHA 12) and did not show cytotoxicity against HEK-293 or HT-29 cells. In conclusion, this study presents a new class of drugs with better antigiardial activity in relation to thymol, acting as a basis for the synthesis of new bioactive molecules. Molecular hybridization technique combined with the Morita-Baylis-Hillman reaction provided new thymol derivatives with giardicidal activity superior to the precursor molecules.


Subject(s)
Giardia lamblia , Thymol , Aldehydes , Catalysis , HEK293 Cells , Humans , Thymol/pharmacology
4.
Arch Pharm (Weinheim) ; 355(9): e2200004, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35621705

ABSTRACT

For the first time, compounds developed from the 1,2,3-triazole scaffold were evaluated as novel drugs to treat triple-negative breast cancer (TNBC). Four organic salts were idealized as nonclassical bioisosteres of miltefosine, which is used in the topical treatment for skin metastasizing breast carcinoma. Among them, derivative dhmtAc displayed better solubility and higher cytotoxicity against the human breast adenocarcinoma cell line and mouse 4T1 cell lines, which are representatives of TNBC. In vitro assays revealed that dhmtAc interferes with cell integrity, confirmed by lactate dehydogenase leakage. Due to its human peripheral blood mononuclear cell (PBMC) toxicity, dhmtAc in vivo studies were carried out with the drug incorporated in a long-circulating and pH-sensitive liposome (SpHL-dhmtAc), and the acute toxicity in BALB/c mice was determined. Free dhmtAc displayed cardiac and pulmonary toxicity after the systemic administration of 5 mg/kg doses. On the other hand, SpHL-dhmtAc displayed no toxicity at 20 mg/kg. The in vivo antitumor effect of SpHL-dhmtAc was investigated using the 4T1 heterotopic murine model. Intravenous administration of SpHL-dhmtAc reduced the tumor volume and weight, without interfering with the body weight, compared with the control group and the dhmtAc free form. The incorporation of the triazole compound in the liposome allowed the demonstration of its anticancer potential. These findings evidenced 1,3,4-trisubstituted-1,2,3-triazole as a promising scaffold for the development of novel drugs with applicability for the treatment of patients with TNBC.


Subject(s)
Liposomes , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Humans , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C , Structure-Activity Relationship , Triazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy
5.
Exp Parasitol ; 216: 107940, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32562606

ABSTRACT

Therapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.


Subject(s)
Animal Testing Alternatives/methods , Antiprotozoal Agents/toxicity , Flow Cytometry/methods , Leishmania/drug effects , Neglected Diseases/drug therapy , Adult , Amphotericin B/pharmacology , Amphotericin B/toxicity , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Fluorescein-5-isothiocyanate , Fluorescent Dyes , Humans , Leishmania braziliensis/drug effects , Leishmaniasis/drug therapy , Leukocytes/drug effects , Leukocytes/parasitology , Meglumine Antimoniate/pharmacology , Meglumine Antimoniate/therapeutic use , Meglumine Antimoniate/toxicity , Microscopy, Confocal , Middle Aged , Monocytes/drug effects , Monocytes/parasitology , Time Factors , Young Adult
6.
An Acad Bras Cienc ; 89(3 Suppl): 2053-2073, 2017.
Article in English | MEDLINE | ID: mdl-28813096

ABSTRACT

This study aimed to further investigate the cytotoxicity against tumor cell lines and several bacterial strains of Annona squamosa and its mode of action. Methanol extracts of A. squamosa leaves (ASL) and seeds (ASS) were used. ASL showed significant antibacterial activity against S. aureus, K. pneumoniae and E. faecalis with MIC values of 78, 78 and 39 µg/mL respectively. Moreover, ASL exhibited significant biofilm disruption, rapid time dependent kinetics of bacterial killing, increased membrane permeability and significantly reduced the cell numbers and viability. Regarding the cytotoxicity against tumor cell lines, ASS was more active against Jurkat and MCF-7 cells, with CI50 1.1 and 2.1 µg/mL, respectively. ASL showed promising activity against Jurkat and HL60, with CI50 4.2 and 6.4 µg/mL, respectively. Both extracts showed lower activity against VERO cells and reduced the clonogenic survival at higher concentrations (IC90) to MCF-7 and HCT-116 lineages. The alkaloids anonaine, asimilobine, corypalmine, liriodenine nornuciferine and reticuline were identified in extracts by UPLC-ESI-MS/MS analysis. This study reinforced that A. squamosa presents a remarkable phytomedicinal potential and revealed that its antimicrobial mechanism of action is related to bacterial membrane destabilization.


Subject(s)
Annona/chemistry , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/drug effects , Klebsiella pneumoniae/drug effects , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Animals , Cell Line, Tumor/drug effects , Cell Membrane/drug effects , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests
7.
Arch Biochem Biophys ; 606: 34-40, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27431056

ABSTRACT

The human topoisomerase IB inhibition and the antiproliferative activity of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone HPyCT4BrPh alone and its copper(II) complex [Cu(PyCT4BrPh)Cl] was investigated. [Cu(PyCT4BrPh)Cl] inhibits both the DNA cleavage and religation step of the enzyme, whilst the ligand alone does not display any effect. In addition we show that coordination to copper(II) improves the cytotoxicity of HPyCT4BrPh against THP-1 leukemia and MCF-7 breast cancer cells. The data indicate that the copper(II) thiosemicarbazone complex may hit human topoisomerase IB and that metal coordination can be useful to improve cytotoxicity of this versatile class of compounds.


Subject(s)
Copper/chemistry , DNA Topoisomerases, Type I/chemistry , Organometallic Compounds/chemistry , Thiosemicarbazones/chemistry , Catalysis , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , DNA/chemistry , Drug Screening Assays, Antitumor , Humans , Kinetics , MCF-7 Cells , Molecular Structure , Nucleic Acid Conformation
8.
Bioorg Med Chem ; 24(13): 2988-2998, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27209169

ABSTRACT

Complexes [Bi(2AcPh)Cl2]·0.5H2O (1), [Bi(2AcpClPh)Cl2] (2), [Bi(2AcpNO2Ph)Cl2] (3), [Bi(2AcpOHPh)Cl2]·2H2O (4), [Bi(H2BzPh)Cl3]·2H2O (5), [Bi(H2BzpClPh)Cl3] (6), [Bi(2BzpNO2Ph)Cl2]·2H2O (7) and [Bi(H2BzpOHPh)Cl3]·2H2O (8) were obtained with 2-acetylpyridine phenylhydrazone (H2AcPh), its -para-chloro-phenyl- (H2AcpClPh), -para-nitro-phenyl (H2AcpNO2Ph) and -para-hydroxy-phenyl (H2AcpOHPh) derivatives, as well as with the 2-benzoylpyridine phenylhydrazone analogues (H2BzPh, H2BzpClPh, H2BzpNO2Ph, H2BzpOHPh). Upon coordination to bismuth(III) antibacterial activity against Gram-positive and Gram-negative bacterial strains significantly improved except for complex (4). The cytotoxic effects of the compounds under study were evaluated on HL-60, Jurkat and THP-1 leukemia, and on MCF-7 and HCT-116 solid tumor cells, as well as on non-malignant Vero cells. In general, 2-acetylpyridine-derived hydrazones proved to be more potent and more selective as cytotoxic agents than the corresponding 2-benzoylpyridine-derived counterparts. Exposure of HCT-116 cells to H2AcpClPh, H2AcpNO2Ph and complex (3) led to 99% decrease of the clonogenic survival. The IC50 values of these compounds were three-fold smaller when cells were cultured in soft-agar (3D) than when cells were cultured in monolayer (2D), suggesting that they constitute interesting scaffolds, which should be considered in further studies aiming to develop new drug candidates for the treatment of colon cancer.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Bacteria/drug effects , Bismuth/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/toxicity , Hydrazones/chemistry , Pyridines/chemistry , Animals , Anti-Infective Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Colony-Forming Units Assay , Coordination Complexes/chemistry , Humans , Inhibitory Concentration 50 , Neoplasms/drug therapy , Structure-Activity Relationship , Vero Cells
9.
Biometals ; 29(3): 515-26, 2016 06.
Article in English | MEDLINE | ID: mdl-27091443

ABSTRACT

Complexes [Au(PyCT4BrPh)Cl]Cl (1), [Pt(PyCT4BrPh)Cl]0.5KCl (2), and [Pd(PyCT4BrPh)Cl]KCl (3) were obtained with 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh). Although complexes (2) and (3) did not exhibit potent cytotoxic activity, HPyCT4BrPh and its gold(III) complex (1) proved to be highly cytotoxic against HL-60 (human promyelocytic leukemia) and THP-1 (human monocytic leukemia) cells, and against MDA-MB 231 and MCF-7 (human breast adenocarcinoma) solid tumor cells. Except for HL-60 cells, upon coordination to gold(III) a 2- to 3-fold increase in the cytotoxic effect was observed. An investigation on the possible biological targets of the gold(III) complex was carried out. Complex (1) but not the free thiosemicarbazone inhibits the enzymatic activity of thioredoxin reductase (TrxR). The affinity of 1 for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. While HPyCT4BrPh was inactive, 1 was able to inhibit topoisomerase IB (Topo IB) activity. Hence, inhibition of TrxR and Topo IB could contribute to the mechanism of cytotoxic action of complex (1).


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Enzyme Inhibitors/pharmacology , Pyridines/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/metabolism , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry
10.
Mem Inst Oswaldo Cruz ; 111(3): 209-17, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27008375

ABSTRACT

Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values ≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, ß-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/chemistry , DNA, Fungal/isolation & purification , Desert Climate , Paracoccidioides/drug effects , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Chromatography, Reverse-Phase , Cytochalasins/analysis , Mass Spectrometry , Methylene Chloride , Microbial Sensitivity Tests , Phylogeny , Sequence Analysis, DNA , Solid Phase Extraction , Vero Cells/drug effects
11.
Int J Mol Sci ; 16(4): 7027-44, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25826531

ABSTRACT

The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-ß (TGF-ß), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-ß displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Carica/enzymology , Melanoma, Experimental/drug therapy , Peptide Hydrolases/administration & dosage , Skin Neoplasms/drug therapy , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Cell Adhesion/drug effects , Cell Line, Tumor , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Peptide Hydrolases/pharmacology , Plant Proteins/administration & dosage , Plant Proteins/pharmacology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Treatment Outcome , Tumor Necrosis Factor-alpha/metabolism
12.
J Biochem Mol Toxicol ; 27(11): 479-85, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23868213

ABSTRACT

Hypnophilin (HNP) is a sesquiterpene that is isolated from Lentinus cf. strigosus and has cytotoxic activities. Here, we studied the calcium signaling and cytotoxic effects of HNP in UACC-62 cells, a human skin melanoma cell line. HNP was able to increase the intracellular calcium concentration in UACC-62 cells, which was blocked in cells stimulated in Ca(2+) -free media. HNP treatment with BAPTA-AM, an intracellular Ca(2+) chelator, caused an increase in calcium signals. HNP showed cytotoxicity against UACC-62 cells in which it induced DNA fragmentation and morphological alterations, including changes in the nuclear chromatin profile and increased cytoplasmatic vacuolization, but it had no effect on the plasma membrane integrity. These data suggest that cytotoxicity in UACC-62 cells, after treatment with HNP, is associated with Ca(2+) influx. Together, these findings suggest that HNP is a relevant tool for the further investigation of new anticancer approaches.


Subject(s)
Calcium Signaling/genetics , Calcium/metabolism , Sesquiterpenes/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Calcium Signaling/drug effects , Cell Line , DNA Fragmentation/drug effects , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Humans , Neoplasms/drug therapy
13.
Hepatology ; 54(1): 296-306, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21503946

ABSTRACT

UNLABELLED: Subcellular Ca(2+) signals control a variety of responses in the liver. For example, mitochondrial Ca(2+) (Ca(mit)(2+)) regulates apoptosis, whereas Ca(2+) in the nucleus regulates cell proliferation. Because apoptosis and cell growth can be related, we investigated whether Ca(mit)(2+) also affects liver regeneration. The Ca(2+)-buffering protein parvalbumin, which was targeted to the mitochondrial matrix and fused to green fluorescent protein, was expressed in the SKHep1 liver cell line; the vector was called parvalbumin-mitochondrial targeting sequence-green fluorescent protein (PV-MITO-GFP). This construct properly localized to and effectively buffered Ca(2+) signals in the mitochondrial matrix. Additionally, the expression of PV-MITO-GFP reduced apoptosis induced by both intrinsic and extrinsic pathways. The reduction in cell death correlated with the increased expression of antiapoptotic genes [B cell lymphoma 2 (bcl-2), myeloid cell leukemia 1, and B cell lymphoma extra large] and with the decreased expression of proapoptotic genes [p53, B cell lymphoma 2-associated X protein (bax), apoptotic peptidase activating factor 1, and caspase-6]. PV-MITO-GFP was also expressed in hepatocytes in vivo with an adenoviral delivery system. Ca(mit)(2+) buffering in hepatocytes accelerated liver regeneration after partial hepatectomy, and this effect was associated with the increased expression of bcl-2 and the decreased expression of bax. CONCLUSION: Together, these results reveal an essential role for Ca(mit)(2+) in hepatocyte proliferation and liver regeneration, which may be mediated by the regulation of apoptosis.


Subject(s)
Apoptosis/physiology , Calcium/metabolism , Liver Regeneration/physiology , Mitochondria, Liver/metabolism , Animals , Calcium Signaling/physiology , Cell Proliferation , Male , Models, Animal , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism
14.
Anal Biochem ; 421(2): 742-9, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22197419

ABSTRACT

Replication protein A (RPA) interacts with multiple checkpoint proteins and promotes signaling through the ATR kinase, a key regulator of checkpoint pathways in the mammalian response to DNA damage. In cancer cells, increased DNA repair activity contributes to resistance to chemotherapy. Therefore, small molecules that block binding of checkpoint proteins to RPA may inhibit the DNA damage response and, thus, sensitize cancer cells to DNA-damaging agents. Here we report on the development of a homogeneous, high-throughput fluorescence polarization assay for identifying compounds that block the critical protein-protein interaction site in the basic cleft of the 70N domain of RPA (RPA70N). A fluorescein isothiocyanate (FITC)-labeled peptide derived from the ATR cofactor, ATRIP, was used as a probe in the binding assay. The ability of the assay to accurately detect relevant ligands was confirmed using peptides derived from ATRIP, RAD9, MRE11, and p53. The assay was validated for use in high-throughput screening using the Spectrum collection of 2000 compounds. The FPA assay was performed with a Z' factor of ≥ 0.76 in a 384-well format and identified several compounds capable of inhibiting the RPA70N binding interface.


Subject(s)
Fluorescence Polarization/methods , High-Throughput Screening Assays , Replication Protein A/chemistry , Amino Acid Sequence , DNA Damage , Molecular Sequence Data , Protein Structure, Tertiary , Replication Protein A/antagonists & inhibitors
15.
Biometals ; 25(3): 587-98, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22526562

ABSTRACT

Complexes [Au(2)(H(2)Gy3DH)(2)]Cl(2) (1), [Au(H(2)Gy3Me)]Cl(3) (2) and [Au(H(2)Gy3Et)]Cl(3) (3) were obtained with glyoxaldehyde bis(thiosemicarbazone) (H(2)Gy3DH) and its N(3)-methyl (H(2)Gy3Me) and N(3)-ethyl (H(2)Gy3Et) derivatives. The bis(thiosemicarbazones) and their gold(I) and gold(III) complexes exhibited anti-proliferative activity against HL-60, Jurkat (leukemia) and MCF-7 (breast cancer) cells at 10 µmol L(-1). Complex (2) was able to in vitro inhibit thioredoxin reductase (TrxR) activity, which suggests that inhibition of TrxR could be part of its mechanism of action.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gold/chemistry , Thioredoxin-Disulfide Reductase/metabolism , Thiosemicarbazones/chemistry , Cell Line, Tumor , Electrochemistry , Enzyme Activation/drug effects , HL-60 Cells , Humans
16.
An Acad Bras Cienc ; 84(4): 1081-90, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23037306

ABSTRACT

The bioactivity guided fractionation of the dichloromethane extract of Mitracarpus frigidus afforded the pyranonaphthoquinone psychorubrin. This compound, hitherto unknown in the genus Mitracarpus, had its biological activity evaluated against one panel of bacteria and two fungi, three tumor cell lines (HL60, Jurkat and MCF-7) and four Leishmania species. Its identity was confirmed unambiguously by (1)H, (13)C, (1)H-COSY, IR and UV-Vis spectroscopy and mass spectrometry. Psychorubrin displayed a very promising antitumor with IC(50) of 4.5, 5.6 and 1.1 µM for HL60, Jurkat and MCF-7 cell lines, respectively. Antimicrobial activity, mainly against Cryptococcus neoformans (MIC of 87.3 µM) was observed. A pronounced antileishmanial potential was also verified with IC(50) varying from 1.7 to 2.7 µM for the Leishmania species tested. This is the first report of the presence of pyranonapthoquinones in the Mitracarpus genus, which may serve as a chemotaxonomical marker.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/pharmacology , Naphthoquinones/pharmacology , Rubiaceae/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Antiprotozoal Agents/isolation & purification , Cell Line, Tumor , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Leishmania/drug effects , Microbial Sensitivity Tests , Naphthoquinones/isolation & purification
17.
Int Immunopharmacol ; 110: 108952, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35716482

ABSTRACT

Visceral leishmaniasis (VL) is an infectious disease caused by Leishmania infantum (L. infantum). Currently, there are no vaccines and/or prophylactic therapies against VL, and the recentpharmacological approaches come from the drug repositioning strategy. Here, we evaluated the anticancer drug pamidronate (PAM) to identify a new therapeutic option for the treatment of human VL. We assessed its in vitro antileishmanial activity against the promastigote and amastigote forms of L. infantum by evaluating cell cytotoxicity. The antileishmanial and immunomodulatory activities were assessed using human peripheral blood leukocytes ex vivo. PAM induced the formation of vacuoles in the cytoplasm of the promastigotes and alterations in the morphology of the kinetoplast and mitochondria in vitro, which indicates anti-promastigote activity. PAM also reduced the number of infected macrophages and intracellular amastigotes in a concentration-dependent manner, with cell viability above 70%. In ex vivo, PAM reduced the internalized forms of L. infantum in the classical monocyte subpopulation. Furthermore, it enhanced IL-12 and decreased IL-10 and TGF-ß by monocytes and neutrophils. Increased IFN-γ and TNF levels for CD8- and CD8+ T lymphocytes and B lymphocytes, respectively, were observed after the treatment with PAM, as well as a reduction in IL-10 by the lymphocyte subpopulations evaluated. Taken together, our results suggest that PAM may be eligible as a potential therapeutic alternative for drug repurposing to treat human visceral leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Repositioning , Humans , Interleukin-10/therapeutic use , Leishmaniasis/drug therapy , Leishmaniasis, Visceral/drug therapy , Mice , Mice, Inbred BALB C , Pamidronate
18.
Med Oncol ; 39(12): 212, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175695

ABSTRACT

BACKGROUND: Sex-determining region Y-box 3 (SOX3) protein, a SOX transcriptions factors group, has been identified as a key regulator in several diseases, including cancer. Downregulation of transcriptions factors in invasive ductal carcinoma (IDC) can interfere in neoplasia development, increasing its aggressiveness. We investigated SOX3 protein expression and its correlation with apoptosis in the MDA-MB-231 cell line, as SOX3 and Pro-Caspase-3 immunoexpression in paraffin-embedded invasive ductal carcinoma tissue samples from patients (n = 27). Breast cancer cell line MDA-MD-231 transfected with pEF1-SOX3 + and pEF1-Empty vector followed by cytotoxicity assay (MTT), Annexin-V FITC PI for apoptosis percentage assessment by flow cytometry, qPCR for apoptotic-related gene expression, immunofluorescence, and immunohistochemistry to SOX3 immunolocalization in culture cells, and paraffin-embedded invasive ductal carcinoma tissue samples. RESULTS: Apoptotic rate was higher in cells transfected with pEF1-SOX3 + (56%) than controls (10%). MDA-MB-231 transfected with pEF1-SOX3 + presented upregulation of pro-apoptotic mRNA from CASP3, CASP8, CASP9, and BAX genes, contrasting with downregulation antiapoptotic mRNA from BCL2, compared to non-transfected cells and cells transfected with pEF1-empty vector (p < 0.005). SOX3 protein nuclear expression was detected in 14% (4/27 cases) of ductal carcinoma cases, and pro-Caspase-3 expression was positive in 50% of the cases. CONCLUSION: Data suggest that SOX3 transcription factor upregulates apoptosis in breast cancer cell line MDA-MB-231, and has a down nuclear expression in ductal carcinoma cases, and need to be investigated as a tumor suppressor protein, and its loss of expression and non-nuclear action turn the cells resistant to apoptosis. Further studies are necessary to understand how SOX3 protein regulates the promoter regions of genes involved in apoptosis.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Caspase 3 , Female , Fluorescein-5-isothiocyanate , Humans , RNA, Messenger , SOXB1 Transcription Factors , Tumor Suppressor Proteins , Up-Regulation , bcl-2-Associated X Protein
19.
Virol J ; 8: 334, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21718481

ABSTRACT

Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV) induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi), by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.


Subject(s)
Apoptosis , Distemper Virus, Canine/pathogenicity , Oncolytic Viruses/pathogenicity , Caspase 3/biosynthesis , Caspase 8/biosynthesis , DNA Fragmentation , Flow Cytometry , Gene Expression Profiling , HeLa Cells , Humans , Immunohistochemistry
20.
Biometals ; 24(4): 595-601, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21221718

ABSTRACT

Complexes [Sb(QN)(2)Cl] (1), [Sb(QC)(2)Cl] (2) and [Sb(QI)(2)Cl] (3) were obtained with 8-hydroxyquinoline (HQN), 5-chloro-8-hydroxyquinoline (HQC) and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, HQI). The quinoline derivatives and their antimony(III) complexes were evaluated for their anti-trypanosomal activity as well as for their cytotoxicity against HL-60 and Jurkat human leukemia cell lines. Upon coordination to antimony(III) the anti-trypanosomal activity of HQC and HQI increases, the highest improvement being observed for complex (3), which was the most active among all studied compounds against both epimastigote and trypomastigote forms of Trypanosoma cruzi. All quinoline derivatives proved to be cytotoxic against both leukemia cell lineages. Upon coordination to antimony(III) the cytotoxicity of HQN improved against Jurkat leukemia cells. While SbCl(3) proved to be cytotoxic against HL-60 cells, it was not active against Jurkat cells. However, its coordination to the quinoline derivatives resulted in complexes with significant cytotoxicity against Jurkat cells.


Subject(s)
Antimony/chemistry , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Hydroxyquinolines/chemistry , Organometallic Compounds/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HL-60 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Parasitic Sensitivity Tests , Spleen/cytology , Spleen/drug effects , Structure-Activity Relationship , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL