Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Dev Biol ; 488: 11-29, 2022 08.
Article in English | MEDLINE | ID: mdl-35523320

ABSTRACT

Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.


Subject(s)
Planarians , Animals , Body Patterning/genetics , Muscle Fibers, Skeletal/metabolism , Planarians/physiology , RNA Helicases , RNA Interference , Signal Transduction/genetics , Wnt Proteins/metabolism
2.
FEBS Lett ; 593(22): 3198-3209, 2019 11.
Article in English | MEDLINE | ID: mdl-31529697

ABSTRACT

Planaria is an ideal system to study factors involved in regeneration and tissue homeostasis. Little is known about the role of metabolites and small molecules in stem cell maintenance and lineage specification in planarians. Using liquid chromatography and mass spectrometry (LC-MS)-based quantitative metabolomics, we determined the relative levels of metabolites in stem cells, progenitors, and differentiated cells of the planarian Schmidtea mediterranea. Tryptophan and its metabolic product serotonin are significantly enriched in stem cells and progenitor population. Serotonin biosynthesis in these cells is brought about by a noncanonical enzyme, phenylalanine hydroxylase. Knockdown of Smed-pah leads to complete disappearance of eyes in regenerating planaria, while exogenous supply of serotonin and its precursor rescues the eyeless phenotype. Our results demonstrate a key role for serotonin in eye regeneration.


Subject(s)
Metabolomics/methods , Planarians/physiology , Serotonin/metabolism , Animals , Cell Differentiation , Chromatography, Liquid , Mass Spectrometry , Ocular Physiological Phenomena , Phenylalanine Hydroxylase/metabolism , Regeneration , Stem Cells/cytology , Stem Cells/metabolism , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL