Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 24(17): 5093-5103, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38578845

ABSTRACT

Recent advances in single-particle photothermal circular dichroism (PT CD) and photothermal magnetic circular dichroism (PT MCD) microscopy have shown strong promise for diverse applications in chirality and magnetism. Photothermal circular dichroism microscopy measures direct differential absorption of left- and right-circularly polarized light by a chiral nanoobject and thus can measure a pure circular dichroism signal, which is free from the contribution of circular birefringence and linear dichroism. Photothermal magnetic circular dichroism, which is based on the polar magneto-optical Kerr effect, can probe the magnetic properties of a single nanoparticle (of sizes down to 20 nm) optically. Single-particle measurements enable studies of the spatiotemporal heterogeneity of magnetism at the nanoscale. Both PT CD and PT MCD have already found applications in chiral plasmonics and magnetic nanomaterials. Most importantly, the advent of these microscopic techniques opens possibilities for many novel applications in biology and nanomaterial science.

2.
Nano Lett ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078741

ABSTRACT

Magnetic nanomaterials record information as fast as picoseconds in computer memories but retain it for millions of years in ancient rocks. This exceedingly broad range of times is covered by hopping over a potential energy barrier through temperature, ultrafast optical excitation, mechanical stress, or microwaves. As switching depends on nanoparticle size, shape, orientation, and material properties, only single-nanoparticle studies can eliminate the ensemble heterogeneity. Here, we push the sensitivity of photothermal magnetic circular dichroism down to individual 20 nm magnetite nanoparticles. Single-particle magnetization curves display superparamagnetic to ferromagnetic behaviors, depending on the size, shape, and orientation. Some nanoparticles undergo thermally activated switching on time scales of milliseconds to minutes. Surprisingly, the switching barrier varies with time, leading to dynamical heterogeneity, a phenomenon familiar in protein dynamics and supercooled liquids. Our observations will help to identify the external parameters influencing magnetization switching and, eventually, to control it, an important step for many applications.

3.
Nano Lett ; 22(9): 3645-3650, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35420830

ABSTRACT

Magnetic imaging is a versatile tool in biological and condensed-matter physics. Existing magnetic imaging techniques either require demanding experimental conditions which restrict the range of their applications or lack the spatial resolution required for single-particle measurements. Here, we combine photothermal (PT) microscopy with magnetic circular dichroism (MCD) to develop a versatile magnetic imaging technique using visible light. Unlike most magnetic imaging techniques, photothermal magnetic circular dichroism (PT MCD) microscopy works particularly well for single nanoparticles immersed in liquids. As a proof of principle, we demonstrate magnetic CD imaging of superparamagnetic magnetite nanoparticulate clusters immersed in microscope immersion oil. The sensitivity of our method allowed us to probe the magnetization curve of single ∼400-nm-diameter magnetite nanoparticulate clusters.


Subject(s)
Magnetite Nanoparticles , Circular Dichroism , Diagnostic Imaging , Ferrosoferric Oxide , Magnetics
4.
Nano Lett ; 19(12): 8934-8940, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31790264

ABSTRACT

Circular dichroism (CD) spectroscopy is a powerful optical technique for the study of chiral materials and molecules. It gives access to an enantioselective signal based on the differential absorption of right and left circularly polarized light, usually obtained through polarization analysis of the light transmitted through a sample of interest. CD is routinely used to determine the secondary structure of proteins and their conformational state. However, CD signals are weak, limiting the use of this powerful technique to ensembles of many molecules. Here, we experimentally realize the concept of photothermal circular dichroism, a technique that combines the enantioselective signal from circular dichroism with the high sensitivity of photothermal microscopy, achieving a superior signal-to-noise ratio to detect chiral nano-objects. As a proof of principle, we studied the chiral response of single plasmonic nanostructures with CD in the visible range, demonstrating a signal-to-noise ratio better than 40 with only 30 ms integration time for these nanostructures. The high signal-to-noise ratio allows us to quantify the CD signal for individual nanoparticles. We show that we can distinguish relative absorption differences for right circularly and left circularly polarized light as small as gmin = 4 × 10-3 for a 30 ms integration time with our current experimental settings. The enhanced sensitivity of our technique extends CD studies to individual nano-objects and opens CD spectroscopy to numbers of molecules much lower than those in conventional experiments.

5.
ACS Photonics ; 9(12): 3995-4004, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36573165

ABSTRACT

Chemically synthesized metal nanoparticles with morphological chiral features are known to exhibit strong circular dichroism. However, we still lack understanding of the correlation between morphological and chiroptical features of plasmonic nanoparticles. To shed light on that question, single nanoparticle experiments are required. We performed photothermal circular dichroism measurements of single chiral and achiral gold nanoparticles and correlated the chiroptical response to the 3D morphology of the same nanoparticles retrieved by electron tomography. In contrast to an ensemble measurement, we show that individual particles within the ensemble display a broad distribution of strength and handedness of circular dichroism signals. Whereas obvious structural chiral features, such as helical wrinkles, translate into chiroptical ones, nanoparticles with less obvious chiral morphological features can also display strong circular dichroism signals. Interestingly, we find that even seemingly achiral nanoparticles can display large g-factors. The origin of this circular dichroism signal is discussed in terms of plasmonics and other potentially relevant factors.

6.
ACS Nano ; 15(10): 16277-16285, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34550678

ABSTRACT

Circular dichroism (CD) is the property of chiral nanoobjects to absorb circularly polarized light of either handedness to different extents. Photothermal microscopy enables the detection of CD signals with high sensitivity and provides a direct absorptive response of the samples under study. To achieve CD measurements at the single-particle level, one must reduce such artifacts as leakage of linear dichroism (LD) and residual intensity modulation. We have simulated our setup with a simple model, which allows us to tune modulation parameters to obtain a CD signal virtually free from artifacts. We demonstrate the sensitivity of our setup by measuring the very weak inherent CD signals of single gold nanospheres. We furthermore demonstrate that our method can be extended to obtain spectra of the full absorptive properties of single nanoparticles, including isotropic absorption, linear dichroism, and circular dichroism. We then investigate nominally achiral gold nanoparticles immersed in a chiral liquid. Carefully taking into account the intrinsic chirality of the particles and its change due to heat-induced reshaping, we find that the chiral liquid carvone surrounding the particle has no measurable effect on the particles' chirality, down to g-factors of 3 × 10-4.

7.
J Phys Chem C Nanomater Interfaces ; 125(45): 25087-25093, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34824661

ABSTRACT

Optoplasmonic bio-detection assays commonly probe the response of plasmonic nanostructures to changes in their dielectric environment. The accurate detection of nanoscale entities such as virus particles, micelles and proteins requires optimization of multiple experimental parameters. Performing such optimization directly via analyte recognition is often not desirable or feasible, especially if the nanostructures exhibit limited numbers of analyte binding sites and if binding is irreversible. Here we introduce photothermal spectro-microscopy as a benchmarking tool for the characterization and optimization of optoplasmonic detection assays.

8.
ACS Nano ; 14(12): 16414-16445, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33216527

ABSTRACT

The photothermal (PT) signal arises from slight changes of the index of refraction in a sample due to absorption of a heating light beam. Refractive index changes are measured with a second probing beam, usually of a different color. In the past two decades, this all-optical detection method has reached the sensitivity of single particles and single molecules, which gave birth to original applications in material science and biology. PT microscopy enables shot-noise-limited detection of individual nanoabsorbers among strong scatterers and circumvents many of the limitations of fluorescence-based detection. This review describes the theoretical basis of PT microscopy, the methodological developments that improved its sensitivity toward single-nanoparticle and single-molecule imaging, and a vast number of applications to single-nanoparticle imaging and tracking in material science and in cellular biology.

SELECTION OF CITATIONS
SEARCH DETAIL