Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Rev Mol Cell Biol ; 25(4): 270-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38086922

ABSTRACT

The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.


Subject(s)
Adipocytes, White , Obesity , Humans , Adipocytes, White/metabolism , Adipocytes, White/pathology , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology
3.
Nature ; 613(7943): 355-364, 2023 01.
Article in English | MEDLINE | ID: mdl-36599988

ABSTRACT

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2-5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.


Subject(s)
Cells , DNA Methylation , Epigenesis, Genetic , Epigenome , Humans , Cell Line , Cells/classification , Cells/metabolism , Chromatin/genetics , Chromatin/metabolism , CpG Islands/genetics , DNA/genetics , DNA/metabolism , Embryonic Development , Enhancer Elements, Genetic , Organ Specificity , Polycomb-Group Proteins/metabolism , Whole Genome Sequencing
4.
Cell ; 153(6): 1219-1227, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746839

ABSTRACT

Adult-born hippocampal neurons are important for cognitive plasticity in rodents. There is evidence for hippocampal neurogenesis in adult humans, although whether its extent is sufficient to have functional significance has been questioned. We have assessed the generation of hippocampal cells in humans by measuring the concentration of nuclear-bomb-test-derived ¹4C in genomic DNA, and we present an integrated model of the cell turnover dynamics. We found that a large subpopulation of hippocampal neurons constituting one-third of the neurons is subject to exchange. In adult humans, 700 new neurons are added in each hippocampus per day, corresponding to an annual turnover of 1.75% of the neurons within the renewing fraction, with a modest decline during aging. We conclude that neurons are generated throughout adulthood and that the rates are comparable in middle-aged humans and mice, suggesting that adult hippocampal neurogenesis may contribute to human brain function.


Subject(s)
Aging , Hippocampus/cytology , Hippocampus/physiology , Neurogenesis , Neurons/cytology , Adult , Animals , Humans , Mice , Models, Biological , Neurons/physiology , Radiometric Dating/methods
5.
Int J Obes (Lond) ; 45(5): 934-943, 2021 05.
Article in English | MEDLINE | ID: mdl-33510393

ABSTRACT

Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.


Subject(s)
Adipose Tissue, White/cytology , Cellular Senescence , Senescence-Associated Secretory Phenotype , Aging , Animals , Diabetes Mellitus, Type 2 , Humans , Mice , Obesity , Senotherapeutics
6.
Cytometry A ; 97(8): 800-810, 2020 08.
Article in English | MEDLINE | ID: mdl-32150325

ABSTRACT

Cytometer characterization is critical to define operational bounds within which the data generated are reliable and reproducible. Existing instrument optimization and characterization protocols were developed for cytometers relying on photomultiplier tubes (PMTs) for photon detection. Recently, instrument manufacturers have begun incorporating avalanche photodiodes (APDs) in place of PMTs. Differences in noise and signal amplification properties of the two detector types make many of the established PMT characterization protocols inappropriate for APD-based instruments. In this article, we tested (three machines on two different sites) a variety of approaches to determine the best method for APD optimization on the Beckman Coulter CytoFLEX™ (CytoFLEX). From this, we propose easy-to-implement guidelines for CytoFLEX characterization and operation. These protocols are not designed to compare APD versus PMT based systems, nor are they designed to directly compare different CytoFlex instruments. Following these protocols will allow CytoFLEX users to characterize their instruments and help to identify optimized settings that allow for the generation of consistent and reproducible data. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Photons
7.
Nature ; 478(7367): 110-3, 2011 Sep 25.
Article in English | MEDLINE | ID: mdl-21947005

ABSTRACT

Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring (14)C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.


Subject(s)
Adipose Tissue/metabolism , Health , Lipid Metabolism , Metabolic Diseases/metabolism , Adipocytes/chemistry , Adipocytes/metabolism , Adipose Tissue/cytology , Adolescent , Adult , Aged , Aged, 80 and over , Carbon Radioisotopes/analysis , Cell Size , Cellular Senescence , Child , Child, Preschool , Cohort Studies , DNA/chemistry , Dyslipidemias/metabolism , Dyslipidemias/pathology , Humans , Hyperlipidemia, Familial Combined/genetics , Hyperlipidemia, Familial Combined/metabolism , Hyperlipidemia, Familial Combined/pathology , Lipolysis , Middle Aged , Nuclear Weapons , Obesity/metabolism , Subcutaneous Fat/metabolism , Time Factors , Triglycerides/analysis , Triglycerides/metabolism , Young Adult
8.
Am J Physiol Endocrinol Metab ; 308(9): E822-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25738783

ABSTRACT

Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.


Subject(s)
Adipose Tissue, Brown/drug effects , Norepinephrine/pharmacology , Regional Blood Flow/drug effects , Thermogenesis/physiology , Acclimatization/drug effects , Adipose Tissue, Brown/blood supply , Adipose Tissue, Brown/metabolism , Adrenergic Agents/pharmacology , Animals , Body Composition/drug effects , Body Composition/physiology , Female , Hemodynamics/drug effects , Laser-Doppler Flowmetry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
Nature ; 453(7196): 783-7, 2008 Jun 05.
Article in English | MEDLINE | ID: mdl-18454136

ABSTRACT

Obesity is increasing in an epidemic manner in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells (adipocytes) is thought to be most important. Here we show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese individuals, even after marked weight loss, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analysing the integration of 14C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in early onset obesity, suggesting a tight regulation of fat cell number in this condition during adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.


Subject(s)
Adipocytes/cytology , Adipose Tissue/cytology , Stem Cells/cytology , Adipose Tissue/anatomy & histology , Adult , Body Mass Index , Carbon Radioisotopes , Cell Count , Cell Death , Cell Size , Humans , Obesity/pathology , Weight Loss
10.
Mol Cell Proteomics ; 9(5): 1022-30, 2010 May.
Article in English | MEDLINE | ID: mdl-19965905

ABSTRACT

Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster because the age at death, birth date, and year of death as well as gender can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization, has shown reproducible and more precise results. In this study, we analyzed teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that aboveground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ((14)C), which has been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel, and 10 of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R(2) = 0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 1.0 +/- 0.6 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 +/- 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.


Subject(s)
Age Determination by Teeth/methods , Aspartic Acid/analysis , Aspartic Acid/chemistry , Forensic Sciences/methods , Radiometric Dating/methods , Dental Enamel/chemistry , Homicide , Humans , Linear Models , Stereoisomerism , Tooth Crown/chemistry
11.
Front Cell Dev Biol ; 10: 1003219, 2022.
Article in English | MEDLINE | ID: mdl-36483678

ABSTRACT

Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.

12.
Elife ; 112022 06 14.
Article in English | MEDLINE | ID: mdl-35699419

ABSTRACT

Schizophrenia is a common, severe, and debilitating psychiatric disorder. Despite extensive research there is as yet no biological marker that can aid in its diagnosis and course prediction. This precludes early detection and intervention. Imaging studies suggest brain volume loss around the onset and over the first few years of schizophrenia, and apoptosis has been proposed as the underlying mechanism. Cell-free DNA (cfDNA) fragments are released into the bloodstream following cell death. Tissue-specific methylation patterns allow the identification of the tissue origins of cfDNA. We developed a cocktail of brain-specific DNA methylation markers, and used it to assess the presence of brain-derived cfDNA in the plasma of patients with a first psychotic episode. We detected significantly elevated neuron- (p=0.0013), astrocyte- (p=0.0016), oligodendrocyte- (p=0.0129), and whole brain-derived (p=0.0012) cfDNA in the plasma of patients during their first psychotic episode (n=29), compared with healthy controls (n=31). Increased cfDNA levels were not correlated with psychotropic medications use. Area under the curve (AUC) was 0.77, with 65% sensitivity at 90% specificity in patients with a psychotic episode. Potential interpretations of these findings include increased brain cell death, disruption of the blood-brain barrier, or a defect in clearance of material from dying brain cells. Brain-specific cfDNA methylation markers can potentially assist early detection and monitoring of schizophrenia and thus allow early intervention and adequate therapy.


Subject(s)
Cell-Free Nucleic Acids , Psychotic Disorders , Biomarkers, Tumor/genetics , Brain , Cell-Free Nucleic Acids/genetics , DNA Methylation , Genetic Markers , Humans , Psychotic Disorders/genetics
13.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35076021

ABSTRACT

Cancer inflicts damage to surrounding normal tissues, which can culminate in fatal organ failure. Here, we demonstrate that cell death in organs affected by cancer can be detected by tissue-specific methylation patterns of circulating cell-free DNA (cfDNA). We detected elevated levels of hepatocyte-derived cfDNA in the plasma of patients with liver metastases originating from different primary tumors, compared with cancer patients without liver metastases. In addition, patients with localized pancreatic or colon cancer showed elevated hepatocyte cfDNA, suggesting liver damage inflicted by micrometastatic disease, by primary pancreatic tumor pressing the bile duct, or by a systemic response to the primary tumor. We also identified elevated neuron-, oligodendrocyte-, and astrocyte-derived cfDNA in a subpopulation of patients with brain metastases compared with cancer patients without brain metastasis. Cell type-specific cfDNA methylation markers enabled the identification of collateral tissue damage in cancer, revealing the presence of metastases in specific locations and potentially assisting in early cancer detection.


Subject(s)
Brain Neoplasms , Cell-Free Nucleic Acids , DNA Methylation , Liquid Biopsy/methods , Liver Neoplasms , Neoplasm Metastasis , Pancreatic Neoplasms , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Cell-Free Nucleic Acids/analysis , Cell-Free Nucleic Acids/blood , Early Detection of Cancer/methods , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
14.
Nature ; 437(7057): 333-4, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16163340

ABSTRACT

Establishing the age at death of individuals is an important step in their identification and can be done with high precision up to adolescence by analysis of dentition, but it is more difficult in adults. Here we show that the amount of radiocarbon present in tooth enamel as a result of nuclear bomb testing during 1955-63 is a remarkably accurate indicator of when a person was born. Age is determined to within 1.6 years, whereas the commonly used morphological evaluation of skeletal remains and tooth wear is sensitive to within 5-10 years in adults.


Subject(s)
Age Determination by Teeth/methods , Atmosphere/chemistry , Dental Enamel/chemistry , Radioactive Fallout/analysis , Carbon Dioxide/metabolism , Carbon Radioisotopes/analysis , Diet , Forensic Dentistry/methods , Humans , Sensitivity and Specificity , Time Factors
15.
Nat Med ; 27(11): 1941-1953, 2021 11.
Article in English | MEDLINE | ID: mdl-34608330

ABSTRACT

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Subject(s)
Adipocytes/metabolism , Cell Cycle/physiology , Cellular Senescence/physiology , Hyperinsulinism/pathology , Obesity/pathology , Adipose Tissue/metabolism , Cell Differentiation/physiology , Cyclin D1/metabolism , Humans , Hypoglycemic Agents/pharmacology , Metformin/pharmacology
16.
Biochem Biophys Res Commun ; 396(1): 101-4, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20494119

ABSTRACT

Obesity is a condition where excess body fat accumulates to such an extent that one's health may be affected. Owing to the cardiovascular and metabolic disorders associated with obesity, and the epidemic of obesity facing most countries today, life expectancy in the developed world may start to decrease for the first time in recent history. Other conditions, such as anorexia nervosa and cachexia, are characterised by subnormal levels of adipose tissue and as with obesity lead to morbidity and mortality. Given the significant personal and economic costs of these conditions and their increasing prevalence in society, understanding the factors that determine the fat mass is therefore of prime interest and may lead to effective treatments and/or interventions for these disorders. Fat mass can be regulated in two ways. The lipid filling of pre-existing fat cells could be altered and the number of fat cells could be changed by the generation of new fat cells or the dying of old ones (i.e. adipocyte turnover). This review summarizes what is known about fat cell turnover in humans and the potential clinical implications.


Subject(s)
Adipocytes, White/physiology , Adipose Tissue, White/physiopathology , Obesity/physiopathology , Weight Loss , Humans , Male
17.
Cell Rep ; 27(1): 213-225.e5, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30943403

ABSTRACT

White adipose tissue (WAT) is a central factor in the development of type 2 diabetes, but there is a paucity of translational models to study mature adipocytes. We describe a method for the culture of mature white adipocytes under a permeable membrane. Compared to existing culture methods, MAAC (membrane mature adipocyte aggregate cultures) better maintain adipogenic gene expression, do not dedifferentiate, display reduced hypoxia, and remain functional after long-term culture. Subcutaneous and visceral adipocytes cultured as MAAC retain depot-specific gene expression, and adipocytes from both lean and obese patients can be cultured. Importantly, we show that rosiglitazone treatment or PGC1α overexpression in mature white adipocytes induces a brown fat transcriptional program, providing direct evidence that human adipocytes can transdifferentiate into brown-like adipocytes. Together, these data show that MAAC are a versatile tool for studying phenotypic changes of mature adipocytes and provide an improved translational model for drug development.


Subject(s)
Adipocytes, Brown/physiology , Adipocytes, White/cytology , Adipocytes, White/physiology , Adipogenesis/physiology , Cell Transdifferentiation , Primary Cell Culture/methods , Adipocytes, Brown/cytology , Animals , Cell Transdifferentiation/physiology , Cells, Cultured , Female , Humans , Membranes, Artificial , Mice , RAW 264.7 Cells
18.
Cell Rep ; 24(10): 2746-2756.e5, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30184507

ABSTRACT

Adipocytes, once considered simple lipid-storing cells, are rapidly emerging as complex cells with many biologically diverse functions. A powerful high-throughput method for analyzing single cells is flow cytometry. Several groups have attempted to analyze and sort freshly isolated adipocytes; however, using an adipocyte-specific reporter mouse, we demonstrate that these studies fail to detect the majority of white adipocytes. We define critical settings required for adipocyte flow cytometry and provide a rigid strategy for analyzing and sorting white and brown adipocyte populations. The applicability of our protocol is shown by sorting mouse adipocytes based on size or UCP1 expression and demonstrating that a subset of human adipocytes lacks the ß2-adrenergic receptor, particularly in the insulin-resistant state. In conclusion, the present study confers key technological insights for analyzing and sorting mature adipocytes, opening up numerous downstream research applications.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Flow Cytometry/methods , Adipose Tissue/cytology , Adipose Tissue/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Animals , Humans , Mice , Uncoupling Protein 1/metabolism
19.
Cell Rep ; 25(3): 551-560.e5, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30332637

ABSTRACT

White adipose tissue (WAT) mass is determined by adipocyte size and number. While adipocytes are continuously turned over, the mechanisms controlling fat cell number in WAT upon weight changes are unclear. Herein, prospective studies of human subcutaneous WAT demonstrate that weight gain increases both adipocyte size and number, but the latter remains unaltered after weight loss. Transcriptome analyses associate changes in adipocyte number with the expression of 79 genes. This gene set is enriched for growth factors, out of which one, transforming growth factor-ß3 (TGFß3), stimulates adipocyte progenitor proliferation, resulting in a higher number of cells undergoing differentiation in vitro. The relevance of these observations was corroborated in vivo where Tgfb3+/- mice, in comparison with wild-type littermates, display lower subcutaneous adipocyte progenitor proliferation, WAT hypertrophy, and glucose intolerance. TGFß3 is therefore a regulator of subcutaneous adipocyte number and may link WAT morphology to glucose metabolism.


Subject(s)
Adipogenesis , Adipose Tissue, White/pathology , Glucose Intolerance/etiology , Obesity/complications , Subcutaneous Fat/pathology , Transforming Growth Factor beta3/physiology , Adipose Tissue, White/metabolism , Adolescent , Animals , Case-Control Studies , Cell Differentiation , Female , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prospective Studies , Subcutaneous Fat/metabolism
20.
Nat Commun ; 9(1): 5068, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30498206

ABSTRACT

Methylation patterns of circulating cell-free DNA (cfDNA) contain rich information about recent cell death events in the body. Here, we present an approach for unbiased determination of the tissue origins of cfDNA, using a reference methylation atlas of 25 human tissues and cell types. The method is validated using in silico simulations as well as in vitro mixes of DNA from different tissue sources at known proportions. We show that plasma cfDNA of healthy donors originates from white blood cells (55%), erythrocyte progenitors (30%), vascular endothelial cells (10%) and hepatocytes (1%). Deconvolution of cfDNA from patients reveals tissue contributions that agree with clinical findings in sepsis, islet transplantation, cancer of the colon, lung, breast and prostate, and cancer of unknown primary. We propose a procedure which can be easily adapted to study the cellular contributors to cfDNA in many settings, opening a broad window into healthy and pathologic human tissue dynamics.


Subject(s)
Cell-Free Nucleic Acids/genetics , Algorithms , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cells, Cultured , Colonic Neoplasms/genetics , CpG Islands/genetics , DNA Methylation/genetics , Endothelial Cells/metabolism , Erythrocytes/metabolism , Hepatocytes/metabolism , Humans , Leukocytes/metabolism , Lung Neoplasms/genetics , Promoter Regions, Genetic/genetics , Sepsis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL