Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 120(43): e2306815120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37844232

ABSTRACT

Recent global changes associated with anthropogenic activities are impacting ecological systems globally, giving rise to the Anthropocene. Critical reorganization of biological communities and biodiversity loss are expected to accelerate as anthropogenic global change continues. Long-term records offer context for understanding baseline conditions and those trajectories that are beyond the range of normal fluctuation seen over recent millennia: Are we causing changes that are fundamentally different from changes in the past? Using a rich dataset of late Quaternary pollen records, stored in the open-access and community-curated Neotoma database, we analyzed changes in biodiversity and community composition since the end Pleistocene in North America. We measured taxonomic richness, short-term taxonomic loss and gain, first/last appearances (FAD/LAD), and abrupt community change. For all analyses, we incorporated age-model uncertainty and accounted for differences in sample size to generate conservative estimates. The most prominent signals of elevated vegetation change were seen during the Pleistocene-Holocene transition and since 200 calendar years before present (cal YBP). During the Pleistocene-Holocene transition, abrupt changes and FADs were elevated, and from 200 to -50 cal YBP, we found increases in short-term taxonomic loss, FADs, LADs, and abrupt changes. Taxonomic richness declined from ~13,000 cal YBP until about 6,000 cal YBP and then increased until the present, reaching levels seen during the end Pleistocene. Regionally, patterns were highly variable. These results show that recent changes associated with anthropogenic impacts are comparable to the landscape changes that took place as we moved from a glacial to interglacial world.


Subject(s)
Biodiversity , Ecosystem , Pollen , North America , Biota
2.
J Evol Biol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012224

ABSTRACT

Extrapolating microevolutionary models does not always provide satisfactory explanations for phenotypic diversification on million-year time scales. For example, short-term evolutionary change is often modeled assuming a fixed adaptive landscape, but macroevolutionary changes are likely to involve changes in the adaptive landscape itself. A better understanding of how the adaptive landscape changes across different time intervals and how these changes cause populations to evolve has the potential to narrow the gap between micro- and macroevolution. Here, we analyze two fossil diatom time series of exceptional quality and resolution covering time intervals of a few hundred thousand years using models that account for different behaviors of the adaptive landscape. We find that one of the lineages evolves on a randomly and continuously changing landscape, whereas the other lineage evolves on a landscape that shows a rapid shift in the position of the adaptive peak of a magnitude that is typically associated with species-level differentiation. This suggests phenotypic evolution beyond generational timescales may be a consequence of both gradual and sudden repositioning of adaptive peaks. Both lineages are showing rapid and erratic evolutionary change and are constantly readapting towards the optimal trait state, observations that align with evolutionary dynamics commonly observed in contemporary populations. The inferred trait evolution over a span of a few hundred thousand years in these two lineages is therefore chimeric in the sense that it combines components of trait evolution typically observed on both short and long timescales.

3.
Front Ecol Environ ; 18(10): 576-583, 2020.
Article in English | MEDLINE | ID: mdl-33408590

ABSTRACT

Addressing unexpected events and uncertainty represents one of the grand challenges of the Anthropocene, yet ecosystem management is constrained by existing policy and laws that were not formulated to deal with today's accelerating rates of environmental change. In many cases, managing for simple regulatory standards has resulted in adverse outcomes, necessitating innovative approaches for dealing with complex social-ecological problems. We highlight a project in the US Great Plains where panarchy - a conceptual framework that emerged from resilience - was implemented at project onset to address the continued inability to halt large-scale transition from grass-to-tree dominance in central North America. We review how panarchy was applied, the initial outcomes and evidence for policy reform, and the opportunities and challenges for which it could serve as a useful model to contrast with traditional ecosystem management approaches.

4.
Proc Biol Sci ; 283(1833)2016 06 29.
Article in English | MEDLINE | ID: mdl-27335415

ABSTRACT

Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.


Subject(s)
Body Size , Diatoms/physiology , Ecosystem , Lakes , Bayes Theorem , Climate Change , Montana
5.
Microbiol Resour Announc ; : e0065924, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365054

ABSTRACT

Here, we report on the raw and coassembled metatranscriptomes of 39 Lake Erie surface (1.0 m) water samples collected over a 2-day diel period encompassing episodic weather and bloom events. Preliminary taxonomic annotations and read mappings revealed that Microcystis spp. accounted for up to ~47% of the transcriptionally active community.

6.
Trends Ecol Evol ; 38(10): 946-960, 2023 10.
Article in English | MEDLINE | ID: mdl-37230884

ABSTRACT

Ancient environmental DNA (aeDNA) data are close to enabling insights into past global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution. However, achieving this potential requires solutions that bridge bioinformatics and paleoecoinformatics. Essential needs include support for dynamic taxonomic inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA data are complex and heterogeneous, generated by dispersed researcher networks, with methods advancing rapidly. Hence, expert community governance and curation are essential to building high-value data resources. Immediate recommendations include uploading metabarcoding-based taxonomic inventories into paleoecoinformatic resources, building linkages among open bioinformatic and paleoecoinformatic data resources, harmonizing aeDNA processing workflows, and expanding community data governance. These advances will enable transformative insights into global-scale biodiversity dynamics during large environmental and anthropogenic changes.


Subject(s)
Biodiversity , DNA, Ancient , Computational Biology , DNA Barcoding, Taxonomic
7.
Anthropocene Rev ; 10(1): 116-145, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37213212

ABSTRACT

Cores from Searsville Lake within Stanford University's Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372-374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1-2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene. Plain Word Summary: The Global boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene Series/Epoch is suggested to lie in sediments accumulated over the last ~120 years in Searsville Lake, Woodside, California, USA. The site fulfills all of the ideal criteria for defining and placing a GSSP. In addition, the Searsville site is particularly appropriate to mark the onset of the Anthropocene, because it was anthropogenic activities-the damming of a watershed-that created a geologic record that now preserves the very signals that can be used to recognize the Anthropocene worldwide.

8.
J Bacteriol ; 192(5): 1475-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20023012

ABSTRACT

Acidovorax ebreus strain TPSY is the first anaerobic nitrate-dependent Fe(II) oxidizer for which there is a completed genome sequence. Preliminary protein annotation revealed an organism optimized for survival in a complex environmental system. Here, we briefly report the completed and annotated genome sequence of strain TPSY.


Subject(s)
Comamonadaceae/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Anaerobiosis , Iron/metabolism , Molecular Sequence Data , Nitrates/metabolism , Oxidation-Reduction
9.
Elementa (Wash D C) ; 5(64): 1-12, 2017.
Article in English | MEDLINE | ID: mdl-29682591

ABSTRACT

A recent paradigm shift from purely biophysical towards social-ecological assessment of watersheds has been proposed to understand, monitor, and manipulate the myriad interactions between human well-being and the ecosystem services that watersheds provide. However, large-scale, quantitative studies in this endeavour remain limited. We utilised two newly developed 'big-data' sets-the Index of Watershed Integrity (IWI) and the Human Well-Being Index (HWBI)-to explore the social-ecological condition of watersheds throughout the conterminous U.S., and identified environmental and socio-economic influences on watershed integrity and human well-being. Mean county IWI was highly associated with ecoregion, industry-dependence, and state, in a spatially-explicit regression model (R2 = 0.77, P < 0.001), whereas HWBI was not (R2 = 0.31, P < 0.001). HWBI is likely influenced by factors not explored here, such as governance structure and formal and informal organisations and institutions. 'Win-win' situations in which both IWI and HWBI were above the 75th percentile were observed in much of Utah, Colorado, and New Hampshire, and lessons from governance that has resulted in desirable outcomes might be learnt from here. Eastern Kentucky and West Virginia, along with large parts of the desert southwest, had intact watersheds but low HWBI, representing areas worthy of further investigation of how ecosystem services might be utilised to improve well-being. The Temperate Prairies and Central USA Plains had widespread areas of low IWI but high HWBI, likely a result of historic exploitation of watershed resources to improve well-being, particularly in farming-dependent counties. The lower Mississippi Valley had low IWI and HWBI, which is likely related to historical (temporal) and upstream (spatial) impacts on both watershed integrity and well-being. The results emphasise the importance of considering spatial and temporal trade-offs when utilising the ecosystem services provided by watersheds to improve human well-being.

10.
PLoS One ; 9(10): e108936, 2014.
Article in English | MEDLINE | ID: mdl-25280010

ABSTRACT

Regime shifts are generally defined as the point of 'abrupt' change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.


Subject(s)
Climate Change , Ecosystem , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL