Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(11): 1469-1480, 2019 11.
Article in English | MEDLINE | ID: mdl-31591568

ABSTRACT

Tissue-resident memory T cells (TRM cells) are crucial mediators of adaptive immunity in nonlymphoid tissues. However, the functional heterogeneity and pathogenic roles of CD4+ TRM cells that reside within chronic inflammatory lesions remain unknown. We found that CD69hiCD103lo CD4+ TRM cells produced effector cytokines and promoted the inflammation and fibrotic responses induced by chronic exposure to Aspergillus fumigatus. Simultaneously, immunosuppressive CD69hiCD103hiFoxp3+ CD4+ regulatory T cells were induced and constrained the ability of pathogenic CD103lo TRM cells to cause fibrosis. Thus, lung tissue-resident CD4+ T cells play crucial roles in the pathology of chronic lung inflammation, and CD103 expression defines pathogenic effector and immunosuppressive tissue-resident cell subpopulations in the inflamed lung.


Subject(s)
Cell Communication/immunology , Immune Tolerance , Immunologic Memory , Pulmonary Fibrosis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, CD/metabolism , Antigens, Fungal/immunology , Aspergillus fumigatus/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Integrin alpha Chains/metabolism , Lung/cytology , Lung/immunology , Lung/pathology , Male , Mice, Transgenic , Pulmonary Fibrosis/pathology , T-Lymphocytes, Regulatory/metabolism
2.
Immunity ; 54(1): 68-83.e6, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33238133

ABSTRACT

While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Linezolid/therapeutic use , Mitochondria/metabolism , Peptides, Cyclic/therapeutic use , Ribosomes/metabolism , Th17 Cells/physiology , Animals , Autoimmunity/drug effects , Cell Differentiation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Targeted Therapy , Multiple Sclerosis/drug therapy , NAD/metabolism , Oxidative Phosphorylation , Peptide Elongation Factor G/genetics , Peptide Elongation Factor G/metabolism
3.
Immunity ; 50(5): 1276-1288.e5, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30902637

ABSTRACT

Microbes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response-a "weaning reaction"-that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer later in life. Prevention of this pathological imprinting was associated with the generation of RORγt+ regulatory T cells, which required bacterial and dietary metabolites-short-chain fatty acids and retinoic acid. Thus, the weaning reaction to microbiota is required for immune ontogeny, the perturbation of which leads to increased susceptibility to immunopathologies later in life.


Subject(s)
Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , T-Lymphocytes, Regulatory/immunology , Weaning , Animals , Animals, Newborn/immunology , Animals, Newborn/microbiology , Fatty Acids, Volatile/metabolism , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Tretinoin/metabolism
4.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31027998

ABSTRACT

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Subject(s)
Dinoprostone/analogs & derivatives , Dinoprostone/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Intra-Abdominal Fat/immunology , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , 3T3 Cells , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Homeostasis/immunology , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Insulin Resistance/genetics , Intra-Abdominal Fat/cytology , Jurkat Cells , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , STAT5 Transcription Factor/metabolism
5.
Cell ; 144(4): 601-13, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21295337

ABSTRACT

Understanding the factors that impede immune responses to persistent viruses is essential in designing therapies for HIV infection. Mice infected with LCMV clone-13 have persistent high-level viremia and a dysfunctional immune response. Interleukin-7, a cytokine that is critical for immune development and homeostasis, was used here to promote immunity toward clone-13, enabling elucidation of the inhibitory pathways underlying impaired antiviral immune response. Mechanistically, IL-7 downregulated a critical repressor of cytokine signaling, Socs3, resulting in amplified cytokine production, increased T cell effector function and numbers, and viral clearance. IL-7 enhanced thymic output to expand the naive T cell pool, including T cells that were not LCMV specific. Additionally, IL-7 promoted production of cytoprotective IL-22 that abrogated liver pathology. The IL-7-mediated effects were dependent on endogenous IL-6. These attributes of IL-7 have profound implications for its use as a therapeutic in the treatment of chronic viral diseases.


Subject(s)
Interleukin-7/therapeutic use , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Animals , Antigens, Differentiation/metabolism , Down-Regulation , Forkhead Transcription Factors/metabolism , Humans , Interleukin-6/immunology , Interleukin-7/immunology , Mice , Programmed Cell Death 1 Receptor , Recombinant Proteins/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , T-Lymphocytes/immunology
6.
Immunity ; 44(6): 1246-8, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27332726

ABSTRACT

Conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) serve non-overlapping functions in immune responses. In this issue of Immunity, Pearce and colleagues (2016) report that pDCs use different metabolic pathways from cDCs to support their specialized function.


Subject(s)
Dendritic Cells/immunology , Immunity , Humans , Viruses
7.
Immunology ; 171(2): 277-285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984469

ABSTRACT

Immunomodulatory T cells play a pivotal role in protection against (auto)immune-mediated diseases that open perspectives for therapeutic modulation. However, how immune regulatory networks operate in vivo is less understood. To this end, we focused on FOXP3+CD4+CD25+ regulatory T cells (Tregs) and invariant natural killer T (iNKT) cells, two lymphocyte populations that independently regulate adaptive and innate immune responses. In vitro, a functional interplay between Tregs and iNKT cells has been described, but whether Tregs modulate the function and phenotype of iNKT cell subsets in vivo and whether this controls iNKT-mediated autoimmunity is unclear. Taking advantage of the conditional depletion of Tregs, we examined the in vivo interplay between iNKT and Treg cells in steady state and in preclinical models of liver and gut autoimmunity. Under non-inflamed conditions, Treg depletion enhanced glycolipid-mediated iNKT cell responses, with a general impact on Type 1, 2 and 17 iNKT subsets. Moreover, in vivo iNKT activation in the absence of Tregs suppressed the induction of iNKT anergy, consistent with a reduction in programmed cell death receptor 1 (PD-1) expression. Importantly, we unveiled a clear role for an in vivo Treg-iNKT crosstalk both in concanavalin A-induced acute hepatitis and oxazolone-induced colitis. Here, the absence of Tregs led to a markedly enhanced liver and gut pathology, which was not observed in iNKT-deficient mice. Taken together, these results provide evidence for a functional interplay between regulatory T cell subsets critical in controlling the onset of autoimmune disease.


Subject(s)
Colitis , Hepatitis , Natural Killer T-Cells , Mice , Animals , T-Lymphocytes, Regulatory , T-Lymphocyte Subsets , Colitis/metabolism , Hepatitis/metabolism
8.
Eur J Immunol ; 53(2): e2149691, 2023 02.
Article in English | MEDLINE | ID: mdl-36577714

ABSTRACT

The CD11c+ MHCII+ compartment within GM-CSF cultures consists of a MHCIIlow CD11bhigh population (GM-Macs) and a MHCIIhigh CD11bint population (GM-DCs), with different metabolic profiles. GM-Macs upregulate iNOS and produce nitric oxide (NO) upon TLR activation inhibiting mitochondrial respiration (OXPHOS) while promoting glycolytic metabolism in GM-DCs, which naturally do not express iNOS.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Nitric Oxide , Mice , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Nitric Oxide/metabolism , Dendritic Cells/metabolism , Cell Differentiation , Mice, Inbred C57BL
9.
Eur J Immunol ; 53(11): e2249816, 2023 11.
Article in English | MEDLINE | ID: mdl-36303448

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. This article provides protocols with top ticks and pitfalls for preparation and successful generation of mouse and human DC from different cellular sources, such as murine BM and HoxB8 cells, as well as human CD34+ cells from cord blood, BM, and peripheral blood or peripheral blood monocytes. We describe murine cDC1, cDC2, and pDC generation with Flt3L and the generation of BM-derived DC with GM-CSF. Protocols for human DC generation focus on CD34+ cell culture on OP9 cell layers for cDC1, cDC2, cDC3, and pDC subset generation and DC generation from peripheral blood monocytes (MoDC). Additional protocols include enrichment of murine DC subsets, CRISPR/Cas9 editing, and clinical grade human DC generation. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , Monocytes , Animals , Mice , Humans , Antigens, CD34 , Phenotype , Cell Differentiation
10.
Immunity ; 43(5): 896-908, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26572061

ABSTRACT

Deletion of self-antigen-specific T cells during thymic development provides protection from autoimmunity. However, it is unclear how efficiently this occurs for tissue-restricted self antigens, or how immune tolerance is maintained for self-antigen-specific T cells that routinely escape deletion. Here we show that endogenous CD4+ T cells with specificity for a set of tissue-restricted self antigens were not deleted at all. For pancreatic self antigen, this resulted in an absence of steady-state tolerance, while for the lung and intestine, tolerance was maintained by the enhanced presence of thymically-derived antigen-specific Foxp3+ regulatory T (Treg) cells. Unlike deletional tolerance, Treg cell-mediated tolerance was broken by successive antigen challenges. These findings reveal that for some tissue-restricted self antigens, tolerance relies entirely on nondeletional mechanisms that are less durable than T cell deletion. This might explain why autoimmunity is often tissue-specific, and it offers a rationale for cancer vaccine strategies targeting tissue-restricted tumor antigens.


Subject(s)
Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Immune Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmunity/immunology , Cancer Vaccines/immunology , Forkhead Transcription Factors/immunology , Mice , Mice, Inbred C57BL
11.
Eur J Immunol ; 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36563126

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.

12.
Ann Rheum Dis ; 82(8): 1076-1090, 2023 08.
Article in English | MEDLINE | ID: mdl-37197892

ABSTRACT

OBJECTIVES: Gut and joint inflammation commonly co-occur in spondyloarthritis (SpA) which strongly restricts therapeutic modalities. The immunobiology underlying differences between gut and joint immune regulation, however, is poorly understood. We therefore assessed the immunoregulatory role of CD4+FOXP3+ regulatory T (Treg) cells in a model of Crohn's-like ileitis and concomitant arthritis. METHODS: RNA-sequencing and flow cytometry was performed on inflamed gut and joint samples and tissue-derived Tregs from tumour necrosis factor (TNF)∆ARE mice. In situ hybridisation of TNF and its receptors (TNFR) was applied to human SpA gut biopsies. Soluble TNFR (sTNFR) levels were measured in serum of mice and patients with SpA and controls. Treg function was explored by in vitro cocultures and in vivo by conditional Treg depletion. RESULTS: Chronic TNF exposure induced several TNF superfamily (TNFSF) members (4-1BBL, TWEAK and TRAIL) in synovium and ileum in a site-specific manner. Elevated TNFR2 messenger RNA levels were noted in TNF∆ARE/+ mice leading to increased sTNFR2 release. Likewise, sTNFR2 levels were higher in patients with SpA with gut inflammation and distinct from inflammatory and healthy controls. Tregs accumulated at both gut and joints of TNF∆ARE mice, yet their TNFR2 expression and suppressive function was significantly lower in synovium versus ileum. In line herewith, synovial and intestinal Tregs displayed a distinct transcriptional profile with tissue-restricted TNFSF receptor and p38MAPK gene expression. CONCLUSIONS: These data point to profound differences in immune-regulation between Crohn's ileitis and peripheral arthritis. Whereas Tregs control ileitis they fail to dampen joint inflammation. Synovial resident Tregs are particularly maladapted to chronic TNF exposure.


Subject(s)
Crohn Disease , Ileitis , Spondylarthritis , Humans , T-Lymphocytes, Regulatory , Receptors, Tumor Necrosis Factor, Type II/genetics , Tumor Necrosis Factor-alpha , Inflammation/metabolism , Ileitis/metabolism , Ileitis/pathology
14.
Nat Immunol ; 12(11): 1071-7, 2011 Oct 09.
Article in English | MEDLINE | ID: mdl-21983833

ABSTRACT

Interleukin 9 (IL-9) is a cytokine linked to lung inflammation, but its cellular origin and function remain unclear. Here we describe a reporter mouse strain designed to map the fate of cells that have activated IL-9. We found that during papain-induced lung inflammation, IL-9 production was largely restricted to innate lymphoid cells (ILCs). IL-9 production by ILCs depended on IL-2 from adaptive immune cells and was rapidly lost in favor of other cytokines, such as IL-13 and IL-5. Blockade of IL-9 production via neutralizing antibodies resulted in much lower expression of IL-13 and IL-5, which suggested that ILCs provide the missing link between the well-established functions of IL-9 in the regulation of type 2 helper T cell cytokines and responses.


Subject(s)
Cytokines/metabolism , Interleukin-9/metabolism , Lymphocytes/metabolism , Pneumonia/immunology , Th2 Cells/immunology , Animals , Antibodies, Blocking/administration & dosage , Cells, Cultured , Cytokines/immunology , Genes, Reporter/genetics , Immunity, Innate , Interleukin-9/genetics , Interleukin-9/immunology , Lung , Lymphocyte Activation/drug effects , Lymphocytes/immunology , Lymphocytes/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Papain/administration & dosage , Paracrine Communication , Pneumonia/chemically induced , Th2 Cells/drug effects
15.
Nat Immunol ; 12(9): 898-907, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21841785

ABSTRACT

Regulatory T cells (T(reg) cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (T(eff) cell) function and gain of suppressive activity by T(reg) cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of T(reg) cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3' untranslated region. Release of SATB1 from the control of Foxp3 in T(reg) cells caused loss of suppressive function, establishment of transcriptional T(eff) cell programs and induction of T(eff) cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining T(reg) cell functionality.


Subject(s)
Chromatin Assembly and Disassembly/immunology , Forkhead Transcription Factors/immunology , Gene Expression Regulation , Matrix Attachment Region Binding Proteins/immunology , Self Tolerance , T-Lymphocytes, Regulatory/immunology , 3' Untranslated Regions/genetics , 3' Untranslated Regions/immunology , Animals , Cell Differentiation/drug effects , Chromatin Assembly and Disassembly/drug effects , Flow Cytometry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Genome, Human , Genome-Wide Association Study , Humans , Lentivirus , Lymphocyte Activation/drug effects , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/immunology , MicroRNAs/metabolism , MicroRNAs/pharmacology , RNA Interference , RNA, Small Interfering/immunology , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Self Tolerance/drug effects , Self Tolerance/genetics , Self Tolerance/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Transduction, Genetic
16.
Eur J Immunol ; 51(3): 738-741, 2021 03.
Article in English | MEDLINE | ID: mdl-33098656

ABSTRACT

Like human Th1 cells, mouse Th1 cells also secrete IFN-γ upon stimulation with a superagonistic anti-CD28 monoclonal antibody (CD28-SA). Crosslinking of the CD28-SA via FcR and CD40-CD40L interactions greatly increased IFN-γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans.


Subject(s)
CD28 Antigens/immunology , Interferon-gamma/immunology , Th1 Cells/immunology , Animals , Antibodies, Monoclonal/immunology , CD40 Antigens/immunology , CD40 Ligand/immunology , Humans , Lymphocyte Activation/immunology , Mice , Signal Transduction/immunology
17.
PLoS Pathog ; 16(3): e1008435, 2020 03.
Article in English | MEDLINE | ID: mdl-32210480

ABSTRACT

A striking feature of human visceral leishmaniasis (VL) is chronic inflammation in the spleen and liver, and VL patients present increased production levels of multiple inflammatory mediators, which contribute to tissue damage and disease severity. Here, we combined an experimental model with the transcriptional profile of human VL to demonstrate that the TLR4-IFN-ß pathway regulates the chronic inflammatory process and is associated with the asymptomatic form of the disease. Tlr4-deficient mice harbored fewer parasites in their spleen and liver than wild-type mice. TLR4 deficiency enhanced the Th1 immune response against the parasite, which was correlated with an increased activation of dendritic cells (DCs). Gene expression analyses demonstrated that IRF1 and IFN-ß were expressed downstream of TLR4 after infection. Accordingly, IRF1- and IFNAR-deficient mice harbored fewer parasites in the target organs than wild-type mice due to having an increased Th1 immune response. However, the absence of TLR4 or IFNAR increased the serum transaminase levels in infected mice, indicating the presence of liver damage in these animals. In addition, IFN-ß limits IFN-γ production by acting directly on Th1 cells. Using RNA sequencing analysis of human samples, we demonstrated that the transcriptional signature for the TLR4 and type I IFN (IFN-I) pathways was positively modulated in asymptomatic subjects compared with VL patients and thus provide direct evidence demonstrating that the TLR4-IFN-I pathway is related to the nondevelopment of the disease. In conclusion, our results demonstrate that the TLR4-IRF1 pathway culminates in IFN-ß production as a mechanism for dampening the chronic inflammatory process and preventing immunopathology development.


Subject(s)
Interferon Regulatory Factor-1/immunology , Interferon-beta/immunology , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Th1 Cells/immunology , Toll-Like Receptor 4/immunology , Animals , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interferon Regulatory Factor-1/genetics , Interferon-beta/genetics , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/pathology , Mice , Mice, Knockout , Th1 Cells/pathology , Toll-Like Receptor 4/genetics
18.
Immunity ; 38(5): 1013-24, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23623380

ABSTRACT

The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-ß receptor (LTßR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTßR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTßR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection.


Subject(s)
Coronavirus Infections/immunology , Lymph Nodes/cytology , Lymph Nodes/metabolism , Myofibroblasts/physiology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/immunology , Interleukin-7/biosynthesis , Lymph Nodes/immunology , Lymphotoxin beta Receptor/metabolism , Lymphotoxin-beta/biosynthesis , Lymphotoxin-beta/metabolism , Membrane Glycoproteins/biosynthesis , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Murine hepatitis virus/immunology , Myofibroblasts/cytology , Signal Transduction
19.
J Immunol ; 204(9): 2429-2438, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32213566

ABSTRACT

Patients with idiopathic pulmonary fibrosis (IPF) can experience life-threatening episodes of acute worsening of their disease, termed acute exacerbation of IPF, which may be caused by bacterial and/or viral infections. The potential for regulatory T cells (Tregs) to limit disease progression in bacterially triggered fibrosis exacerbation has not been explored so far. In the current study, we show that the number of Tregs was significantly increased in mice with established AdTGF-ß1-induced lung fibrosis and further increased in mice with pneumococcal infection-induced lung fibrosis exacerbation. Diphtheria toxin-induced depletion of Tregs significantly worsened infection-induced fibrosis exacerbation as determined by increased lung collagen deposition, lung histology, and elevated pulmonary Th1/Th2 cytokine levels. Conversely, IL-2 complex-induced Treg expansion in wild-type mice with established lung fibrosis completely inhibited pneumococcal infection-induced fibrosis exacerbation as efficaciously as antibiotic treatment while preserving lung antibacterial immunity in mice. Collectively, these findings demonstrate the efficacy of Tregs as "silencers," suppressing infection-induced exacerbation of lung fibrosis in mice, and their expansion may offer a novel adjunctive treatment to limit acute exacerbations in patients with IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cytokines/immunology , Disease Models, Animal , Disease Progression , Female , Idiopathic Pulmonary Fibrosis/microbiology , Interleukin-2/immunology , Lung/immunology , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Pneumococcal Infections/microbiology , Th1 Cells/immunology , Th17 Cells/immunology
20.
J Allergy Clin Immunol ; 148(1): 16-32, 2021 07.
Article in English | MEDLINE | ID: mdl-33966898

ABSTRACT

The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Fatty Acids/immunology , Glycolysis/immunology , Mitochondria/immunology , NAD/immunology , Polyamines/immunology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL