Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Publication year range
1.
Cell ; 184(5): 1262-1280.e22, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636129

ABSTRACT

Improving effector activity of antigen-specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (TEFF)-driving transcription factors (TFs), the transcriptional coordination of TEFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced TEFF responses without compromising memory or exhaustion precursors. Fli1 restrained TEFF lineage differentiation by binding to cis-regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs, allowing more efficient Runx3-driven TEFF biology. CD8+ T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8+ T cell transcriptional landscape from excessive ETS:RUNX-driven TEFF cell differentiation. Moreover, genetic deletion of Fli1 improves TEFF differentiation and protective immunity in infections and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Proto-Oncogene Protein c-fli-1/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CRISPR-Cas Systems , Cell Differentiation , Chronic Disease , Core Binding Factor Alpha 3 Subunit/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Infections/immunology , Mice , Neoplasms/immunology
2.
Genes Dev ; 37(13-14): 605-620, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37536952

ABSTRACT

The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancy (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 was shown to regulate inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to epigenetically repress two inflammatory signaling pathways in neutrophils: Toll-like receptor 4 (TLR4) and type I interferon (IFN) signaling. RUNX1 loss in GMPs augments neutrophils' inflammatory response to the TLR4 ligand lipopolysaccharide through increased expression of the TLR4 coreceptor CD14. RUNX1 binds Cd14 and other genes encoding proteins in the TLR4 and type I IFN signaling pathways whose chromatin accessibility increases when RUNX1 is deleted. Transcription factor footprints for the effectors of type I IFN signaling-the signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRFs)-were enriched in chromatin that gained accessibility in both GMPs and neutrophils when RUNX1 was lost. STAT1::STAT2 and IRF motifs were also enriched in the chromatin of retrotransposons that were derepressed in RUNX1-deficient GMPs and neutrophils. We conclude that a major direct effect of RUNX1 loss in GMPs is the derepression of type I IFN and TLR4 signaling, resulting in a state of fixed maladaptive innate immunity.


Subject(s)
Neutrophils , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Monocytes/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Cytokines/metabolism , Chromatin/metabolism , STAT1 Transcription Factor/metabolism
3.
Cell ; 160(1-2): 241-52, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25594182

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) can reconstitute and sustain the entire blood system. We generated a highly specific transgenic reporter of HSPCs in zebrafish. This allowed us to perform high-resolution live imaging on endogenous HSPCs not currently possible in mammalian bone marrow. Using this system, we have uncovered distinct interactions between single HSPCs and their niche. When an HSPC arrives in the perivascular niche, a group of endothelial cells remodel to form a surrounding pocket. This structure appears conserved in mouse fetal liver. Correlative light and electron microscopy revealed that endothelial cells surround a single HSPC attached to a single mesenchymal stromal cell. Live imaging showed that mesenchymal stromal cells anchor HSPCs and orient their divisions. A chemical genetic screen found that the compound lycorine promotes HSPC-niche interactions during development and ultimately expands the stem cell pool into adulthood. Our studies provide evidence for dynamic niche interactions upon stem cell colonization. PAPERFLICK:


Subject(s)
Endothelium/physiology , Hematopoietic Stem Cells/cytology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Cell Division , Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/physiology , Endothelium/cytology , Hematopoietic Stem Cells/physiology , Mesoderm/cytology , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Stem Cell Niche , Stromal Cells/cytology , Stromal Cells/metabolism , Zebrafish/physiology
4.
Mol Cell ; 81(11): 2332-2348.e9, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33974912

ABSTRACT

Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.


Subject(s)
Carcinogenesis/genetics , DNA Helicases/genetics , Intrinsically Disordered Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Base Sequence , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Chromatin/pathology , DNA Helicases/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Leukemic , Gene Regulatory Networks , Humans , Intrinsically Disordered Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Protein Interaction Mapping , Protein Stability , Protein Transport , Signal Transduction , Survival Analysis , Trans-Activators/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
5.
Genes Dev ; 35(21-22): 1475-1489, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34675061

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are generated de novo in the embryo from hemogenic endothelial cells (HECs) via an endothelial-to-hematopoietic transition (EHT) that requires the transcription factor RUNX1. Ectopic expression of RUNX1 alone can efficiently promote EHT and HSPC formation from embryonic endothelial cells (ECs), but less efficiently from fetal or adult ECs. Efficiency correlated with baseline accessibility of TGFß-related genes associated with endothelial-to-mesenchymal transition (EndoMT) and participation of AP-1 and SMAD2/3 to initiate further chromatin remodeling along with RUNX1 at these sites. Activation of TGFß signaling improved the efficiency with which RUNX1 specified fetal ECs as HECs. Thus, the ability of RUNX1 to promote EHT depends on its ability to recruit the TGFß signaling effectors AP-1 and SMAD2/3, which in turn is determined by the changing chromatin landscape in embryonic versus fetal ECs. This work provides insight into regulation of EndoMT and EHT that will guide reprogramming efforts for clinical applications.


Subject(s)
Hemangioblasts , Cell Differentiation/genetics , Chromatin/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Fetus , Hemangioblasts/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells , Humans , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1
6.
Immunity ; 50(6): 1342-1344, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31216456

ABSTRACT

Inflammatory signals support the birth of hematopoietic stem cells in zebrafish embryos, but their cellular source in mammals is not known. In this issue, Mariani et al. (2019) report that macrophages are a primary source of pro-inflammatory signals that promote blood cell formation in mammalian embryos.


Subject(s)
Hematopoietic Stem Cell Transplantation , Soil , Animals , Aorta , Hematopoiesis , Hematopoietic Stem Cells , Macrophages , Zebrafish
7.
Genes Dev ; 34(13-14): 950-964, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32499402

ABSTRACT

Hematopoietic stem cell (HSC) ontogeny is accompanied by dynamic changes in gene regulatory networks. We performed RNA-seq and histone mark ChIP-seq to define the transcriptomes and epigenomes of cells representing key developmental stages of HSC ontogeny in mice. The five populations analyzed were embryonic day 10.5 (E10.5) endothelium and hemogenic endothelium from the major arteries, an enriched population of prehematopoietic stem cells (pre-HSCs), fetal liver HSCs, and adult bone marrow HSCs. Using epigenetic signatures, we identified enhancers for each developmental stage. Only 12% of enhancers are primed, and 78% are active, suggesting the vast majority of enhancers are established de novo without prior priming in earlier stages. We constructed developmental stage-specific transcriptional regulatory networks by linking enhancers and predicted bound transcription factors to their target promoters using a novel computational algorithm, target inference via physical connection (TIPC). TIPC predicted known transcriptional regulators for the endothelial-to-hematopoietic transition, validating our overall approach, and identified putative novel transcription factors, including the broadly expressed transcription factors SP3 and MAZ. Finally, we validated a role for SP3 and MAZ in the formation of hemogenic endothelium. Our data and computational analyses provide a useful resource for uncovering regulators of HSC formation.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Algorithms , Animals , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic/genetics , Gene Editing , Mice , Sp3 Transcription Factor/metabolism , Transcription Factors/metabolism , Transcriptome
8.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35043940

ABSTRACT

Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.


Subject(s)
Embryo, Mammalian/metabolism , Hematopoietic Stem Cells/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Animals , Cell Differentiation , Core Binding Factor Alpha 2 Subunit/metabolism , Embryo, Mammalian/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hemangioblasts/cytology , Hemangioblasts/metabolism , Hematopoietic Stem Cells/cytology , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/cytology , Myeloid Cells/metabolism , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism
9.
Blood ; 139(19): 2942-2957, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35245372

ABSTRACT

The hematopoietic stem cells (HSCs) that produce blood for the lifetime of an animal arise from RUNX1+ hemogenic endothelial cells (HECs) in the embryonic vasculature through a process of endothelial-to-hematopoietic transition (EHT). Studies have identified inflammatory mediators and fluid shear forces as critical environmental stimuli for EHT, raising the question of how such diverse inputs are integrated to drive HEC specification. Endothelial cell MEKK3-KLF2/4 signaling can be activated by both fluid shear forces and inflammatory mediators, and it plays roles in cardiovascular development and disease that have been linked to both stimuli. Here we demonstrate that MEKK3 and KLF2/4 are required in endothelial cells for the specification of RUNX1+ HECs in both the yolk sac and dorsal aorta of the mouse embryo and for their transition to intraaortic hematopoietic cluster (IAHC) cells. The inflammatory mediators lipopolysaccharide and interferon-γ increase RUNX1+ HECs in an MEKK3-dependent manner. Maternal administration of catecholamines that stimulate embryo cardiac function and accelerate yolk sac vascular remodeling increases EHT by wild-type but not MEKK3-deficient endothelium. These findings identify MEKK-KLF2/4 signaling as an essential pathway for EHT and provide a molecular basis for the integration of diverse environmental inputs, such as inflammatory mediators and hemodynamic forces, during definitive hematopoiesis.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Hemangioblasts , Hematopoiesis , Animals , Cell Differentiation , Core Binding Factor Alpha 2 Subunit/metabolism , Endothelium/metabolism , Hemangioblasts/cytology , Hemangioblasts/metabolism , Hemodynamics , Inflammation Mediators/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MAP Kinase Kinase Kinase 3/metabolism , Mice
10.
Nature ; 545(7655): 439-445, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28514438

ABSTRACT

Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFß and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Endothelium/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Adaptive Immunity , Aging/genetics , Animals , Cell Line , Cell Lineage , Cell Self Renewal , Clone Cells/cytology , Clone Cells/transplantation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
11.
Proc Natl Acad Sci U S A ; 117(38): 23626-23635, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32883883

ABSTRACT

Hematopoietic stem and progenitor cell (HSPC) formation and lineage differentiation involve gene expression programs orchestrated by transcription factors and epigenetic regulators. Genetic disruption of the chromatin remodeler chromodomain-helicase-DNA-binding protein 7 (CHD7) expanded phenotypic HSPCs, erythroid, and myeloid lineages in zebrafish and mouse embryos. CHD7 acts to suppress hematopoietic differentiation. Binding motifs for RUNX and other hematopoietic transcription factors are enriched at sites occupied by CHD7, and decreased RUNX1 occupancy correlated with loss of CHD7 localization. CHD7 physically interacts with RUNX1 and suppresses RUNX1-induced expansion of HSPCs during development through modulation of RUNX1 activity. Consequently, the RUNX1:CHD7 axis provides proper timing and function of HSPCs as they emerge during hematopoietic development or mature in adults, representing a distinct and evolutionarily conserved control mechanism to ensure accurate hematopoietic lineage differentiation.


Subject(s)
Core Binding Factor Alpha 2 Subunit , DNA-Binding Proteins , Hematopoiesis , Animals , Cell Differentiation , Cell Line , Core Binding Factor Alpha 2 Subunit/chemistry , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Hematopoietic Stem Cells , Humans , Male , Mice , Spleen/cytology , Zebrafish
12.
Blood ; 136(7): 845-856, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32392346

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled ∼40 000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.


Subject(s)
Cell Differentiation , Endothelium/embryology , Hemangioblasts/physiology , Hematopoiesis/physiology , Hematopoietic Stem Cells/physiology , Animals , Cell Differentiation/genetics , Core Binding Factor Alpha 2 Subunit/physiology , Embryo, Mammalian , Endothelium/cytology , Endothelium/metabolism , Female , Gene Dosage/physiology , Gene Expression Regulation, Developmental , Hemangioblasts/cytology , Hematopoiesis/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , RNA-Seq/methods
13.
Genes Dev ; 28(23): 2597-612, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25395663

ABSTRACT

Identifying signaling pathways that regulate hematopoietic stem and progenitor cell (HSPC) formation in the embryo will guide efforts to produce and expand HSPCs ex vivo. Here we show that sterile tonic inflammatory signaling regulates embryonic HSPC formation. Expression profiling of progenitors with lymphoid potential and hematopoietic stem cells (HSCs) from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos revealed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ) or IFN-α signaling and zebrafish morphants lacking IFN-γ and IFN-ϕ activity had significantly fewer AGM HSPCs. Conversely, knockdown of IFN regulatory factor 2 (IRF2), a negative regulator of IFN signaling, increased expression of IFN target genes and HSPC production in zebrafish. Chromatin immunoprecipitation (ChIP) combined with sequencing (ChIP-seq) and expression analyses demonstrated that IRF2-occupied genes identified in human fetal liver CD34(+) HSPCs are actively transcribed in human and mouse HSPCs. Furthermore, we demonstrate that the primitive myeloid population contributes to the local inflammatory response to impact the scale of HSPC production in the AGM region. Thus, sterile inflammatory signaling is an evolutionarily conserved pathway regulating the production of HSPCs during embryonic development.


Subject(s)
Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/cytology , Immunity, Innate/genetics , Immunity, Innate/immunology , Signal Transduction , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cytokines/immunology , Embryo, Mammalian , Embryo, Nonmammalian , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Inflammation/genetics , Inflammation/immunology , Interferons/genetics , Interferons/metabolism , Mice , Zebrafish/embryology
14.
Development ; 145(2)2018 01 29.
Article in English | MEDLINE | ID: mdl-29361566

ABSTRACT

Hematopoietic cells differentiate during embryogenesis from a population of endothelial cells called hemogenic endothelium (HE) in a process called the endothelial-to-hematopoietic transition (EHT). The transcription factor Runx1 is required for EHT, but for how long and which endothelial cells are competent to respond to Runx1 are not known. Here, we show that the ability of Runx1 to induce EHT in non-hemogenic endothelial cells depends on the anatomical location of the cell and the developmental age of the conceptus. Ectopic expression of Runx1 in non-hemogenic endothelial cells between embryonic day (E) 7.5 and E8.5 promoted the formation of erythro-myeloid progenitors (EMPs) specifically in the yolk sac, the dorsal aorta and the heart. The increase in EMPs was accompanied by a higher frequency of HE cells able to differentiate into EMPs in vitro Expression of Runx1 just 1 day later (E8.5-E9.5) failed to induce the ectopic formation of EMPs. Therefore, endothelial cells, located in specific sites in the conceptus, have a short developmental window of competency during which they can respond to Runx1 and differentiate into blood cells.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hematopoiesis/physiology , Animals , Cell Differentiation , Core Binding Factor Alpha 2 Subunit/genetics , Female , Gene Expression Regulation, Developmental , Gestational Age , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Male , Mice , Mice, Transgenic , Organ Specificity , Pregnancy , Yolk Sac/cytology , Yolk Sac/embryology , Yolk Sac/metabolism
16.
Nat Immunol ; 9(2): 129-36, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18204427

ABSTRACT

The hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobile tissue and because hematopoietic cells emerge from many embryonic sites. The origin of the adult mammalian blood system remains a topic of lively discussion and intense research. Interest is also focused on developmental signals that induce the adult hematopoietic stem cell program, as these may prove useful for generating and expanding these clinically important cell populations ex vivo. This review presents a historical overview of and the most recent data on the developmental origins of hematopoiesis.


Subject(s)
Cell Lineage , Embryo, Mammalian/cytology , Hematopoietic Stem Cells/physiology , Animals , Cell Lineage/genetics , Erythrocytes/cytology , Hematopoietic Stem Cells/cytology , Humans , Mice
17.
Genes Dev ; 26(14): 1520-6, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22802526

ABSTRACT

The Runx1 transcription factor is post-translationally modified by seryl/threonyl phosphorylation, acetylation, and methylation that control its interactions with transcription factor partners and epigenetic coregulators. In this issue of Genes & Development, Huang and colleagues (pp. 1587-1601) describe how the regulation of Runx1 tyrosyl phosphorylation by Src family kinases and the Shp2 phosphatase toggle Runx1's interactions between different coregulatory molecules.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/physiology , Core Binding Factor Alpha 2 Subunit/metabolism , Megakaryocytes/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction/physiology , src-Family Kinases/metabolism , Animals , Humans
18.
Blood ; 130(22): 2431-2442, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29018080

ABSTRACT

Inversion of chromosome 16 is a consistent finding in patients with acute myeloid leukemia subtype M4 with eosinophilia, which generates a CBFB-MYH11 fusion gene. Previous studies showed that the interaction between CBFß-smooth muscle myosin heavy chain (SMMHC; encoded by CBFB-MYH11) and RUNX1 plays a critical role in the pathogenesis of this leukemia. Recently, it was shown that chromodomain helicase DNA-binding protein-7 (CHD7) interacts with RUNX1 and suppresses RUNX1-induced expansion of hematopoietic stem and progenitor cells. These results suggest that CHD7 is also critical for CBFB-MYH11-induced leukemogenesis. To test this hypothesis, we generated Chd7f/fMx1-CreCbfb+/56M mice, which expressed the Cbfb-MYH11 fusion gene and deactivated Chd7 in hematopoietic cells upon inducing Cre with polyinosinic-polycytidylic acid. The Lin-Sca1-c-Kit+ (LK) population was significantly lower in Chd7f/fMx1-CreCbfb+/56M mice than in Mx1-CreCbfb+/56M mice. In addition, there were fewer 5-bromo-2'-deoxyuridine-positive cells in the LK population in Chd7f/fMx1-CreCbfb+/56M mice, and genes associated with cell cycle, cell growth, and proliferation were differentially expressed between Chd7f/fMx1-CreCbfb+/56M and Mx1-CreCbfb+/56M leukemic cells. In vitro studies showed that CHD7 interacted with CBFß-SMMHC through RUNX1 and that CHD7 enhanced transcriptional activity of RUNX1 and CBFß-SMMHC on Csf1r, a RUNX1 target gene. Moreover, RNA sequencing of c-Kit+ cells showed that CHD7 functions mostly through altering the expression of RUNX1 target genes. Most importantly, Chd7 deficiency delayed Cbfb-MYH11-induced leukemia in both primary and transplanted mice. These data indicate that Chd7 is important for Cbfb-MYH11-induced leukemogenesis by facilitating RUNX1 regulation of transcription and cellular proliferation.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , Leukemia/genetics , Oncogene Proteins, Fusion/genetics , Animals , Cell Cycle , Cell Proliferation , Gene Deletion , Humans , Leukemia/pathology , Mice , Mice, Knockout
19.
Dev Biol ; 415(1): 111-121, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27105579

ABSTRACT

The de novo generation of hematopoietic cells occurs during midgestation when a population of endothelial cells called hemogenic endothelium transitions into hematopoietic progenitors and stem cells. In mammalian embryos, the newly formed hematopoietic cells form clusters in the lumens of the major arteries in the embryo proper and in the vascular plexus of the yolk sac. Small clusters of hematopoietic cells that are independent of the vasculature (referred to here as extravascular islands) were shown to form in the mesentery during vascular remodeling of the vitelline artery. Using three-dimensional imaging of whole mouse embryos we demonstrate that extravascular budding of hematopoietic clusters is a more widespread phenomenon that occurs from the vitelline and the umbilical arteries both proximal to the embryo proper and distal in the extraembryonic yolk sac and placenta. Furthermore, we show that there are several mechanisms by which hematopoietic clusters leave the arteries, including vascular remodeling and extrusion. Lastly, we provide static images suggesting that extravascular islands contribute to the formation of new blood vessels. Thus, extravascular islands may represent a novel mechanism of vasculogenesis whereby established vessels contribute endothelial and hematopoietic cells to developing vascular beds.


Subject(s)
Hematopoietic Stem Cells/cytology , Mesentery/embryology , Neovascularization, Physiologic/physiology , Animals , Antigens, Ly/analysis , Core Binding Factor Alpha 2 Subunit/analysis , Lymphatic System/embryology , Membrane Proteins/analysis , Mesentery/cytology , Mice , Microscopy, Confocal , Organ Specificity , Umbilical Arteries/embryology , Vascular Remodeling , Yolk Sac/blood supply
20.
Adv Exp Med Biol ; 962: 47-64, 2017.
Article in English | MEDLINE | ID: mdl-28299650

ABSTRACT

The de novo generation of hematopoietic stem and progenitor cells (HSPC) occurs solely during embryogenesis from a population of epithelial cells called hemogenic endothelium (HE). During midgestation HE cells in multiple intra- and extraembryonic vascular beds leave the vessel wall as they transition into HSPCs in a process termed the endothelial to hematopoietic transition (EHT). Runx1 expression in HE cells orchestrates the transcriptional switch necessary for the transdifferentiation of endothelial cells into functional HSPCs. Runx1 is widely considered the master regulator of developmental hematopoiesis because it plays an essential function during specification of the hematopoietic lineage during embryogenesis. Here we review the role of Runx1 in embryonic HSPC formation, with a particular focus on its role in hemogenic endothelium.


Subject(s)
Blood Cells/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Embryonic Development/physiology , Hemangioblasts/metabolism , Animals , Cell Transdifferentiation/physiology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/physiology , Endothelium, Vascular/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL