Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: mdl-32591374

ABSTRACT

Identifying microbial indicators of damp and moldy buildings remains a challenge at the intersection of microbiology, building science, and public health. Sixty homes in New York City were assessed for moisture-related damage, and three types of dust samples were collected for microbiological analysis. We applied four approaches for detecting fungal signatures of moisture damage in these buildings. Two novel targeted approaches selected specific taxa, identified by a priori hypotheses, from the broad mycobiome as detected with amplicon sequencing. We investigated whether (i) hydrophilic fungi (i.e., requiring high moisture) or (ii) fungi previously reported as indicating damp homes would be more abundant in water-damaged rooms/homes than in nondamaged rooms/homes. Two untargeted approaches compared water-damaged to non-water-damaged homes for (i) differences between indoor and outdoor fungal populations or (ii) differences in the presence or relative abundance of particular fungal taxa. Strong relationships with damage indicators were found for some targeted fungal groups in some sampling types, although not always in the hypothesized direction. For example, for vacuum samples, hydrophilic fungi had significantly higher relative abundance in water-damaged homes, but mesophilic fungi, unexpectedly, had significantly lower relative abundance in homes with visible mold. Untargeted approaches identified no microbial community metrics correlated with water damage variables but did identify specific taxa with at least weak positive links to water-damaged homes. These results, although showing a complex relationship between moisture damage and microbial communities, suggest that targeting particular fungi offers a potential route toward identifying a fungal signature of moisture damage in buildings.IMPORTANCE Living or working in damp or moldy buildings increases the risk of many adverse health effects, including asthma and other respiratory diseases. To date, however, the particular environmental exposure(s) from water-damaged buildings that causes the health effects have not been identified. Likewise, a consistent quantitative measurement that would indicate whether a building is water damaged or poses a health risk to occupants has not been found. In this work, we tried to develop analytical tools that would find a microbial signal of moisture damage amid the noisy background of microorganisms in buildings. The most successful approach taken here focused on particular groups of fungi-those considered likely to grow in damp indoor environments-and their associations with observed moisture damage. With further replication and refinement, this hypothesis-based strategy may be effective in finding still-elusive relationships between building damage and microbiomes.


Subject(s)
Construction Materials/microbiology , Fungi/physiology , Housing , Humidity , Mycobiome , Dust/analysis , Fungi/isolation & purification , New York City
2.
PLoS One ; 11(11): e0166882, 2016.
Article in English | MEDLINE | ID: mdl-27898693

ABSTRACT

People spend approximately one third of their life sleeping. Exposure to pollutants in the sleep environment often leads to a variety of adverse health effects, such as development and exacerbation of asthma. Avoiding exposure to these pollutants by providing a sufficient air quality in the sleep environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled laminar airflow (TLA) device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity and turbulence diffusivity level, with a particle reduction rate of 52% compared to baseline after 30 minutes. The TLA device delivered a laminar airflow to the breathing zone with a reduction rate of 99.5%. During a periodical duvet lifting mimicking a subject's movement in bed, the particle concentration was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between the duvet and the laying body.


Subject(s)
Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Environment, Controlled , Environmental Exposure/adverse effects , Filtration/instrumentation , Sleep/physiology , Ventilation/methods , Adult , Environmental Exposure/analysis , Humans , Manikins , Respiration , Temperature , Ventilation/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL