Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Magn Reson Med ; 91(4): 1586-1597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38169132

ABSTRACT

PURPOSE: To develop a tissue field-filtering algorithm, called maximum spherical mean value (mSMV), for reducing shadow artifacts in QSM of the brain without requiring brain-tissue erosion. THEORY AND METHODS: Residual background field is a major source of shadow artifacts in QSM. The mSMV algorithm filters large field-magnitude values near the border, where the maximum value of the harmonic background field is located. The effectiveness of mSMV for artifact removal was evaluated by comparing existing QSM algorithms in numerical brain simulation as well as using in vivo human data acquired from 11 healthy volunteers and 93 patients. RESULTS: Numerical simulation showed that mSMV reduces shadow artifacts and improves QSM accuracy. Better shadow reduction, as demonstrated by lower QSM variation in the gray matter and higher QSM image quality score, was also observed in healthy subjects and in patients with hemorrhages, stroke, and multiple sclerosis. CONCLUSION: The mSMV algorithm allows QSM maps that are substantially equivalent to those obtained using SMV-filtered dipole inversion without eroding the volume of interest.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Brain/diagnostic imaging , Brain Mapping/methods , Algorithms , Artifacts
2.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Article in English | MEDLINE | ID: mdl-38247051

ABSTRACT

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Subject(s)
Brain , Image Processing, Computer-Assisted , Consensus , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain/metabolism , Head , Magnetic Resonance Imaging/methods , Algorithms , Brain Mapping/methods
3.
Neuroimage ; 268: 119886, 2023 03.
Article in English | MEDLINE | ID: mdl-36669747

ABSTRACT

Quantitative susceptibility mapping (QSM) involves acquisition and reconstruction of a series of images at multi-echo time points to estimate tissue field, which prolongs scan time and requires specific reconstruction technique. In this paper, we present our new framework, called Learned Acquisition and Reconstruction Optimization (LARO), which aims to accelerate the multi-echo gradient echo (mGRE) pulse sequence for QSM. Our approach involves optimizing a Cartesian multi-echo k-space sampling pattern with a deep reconstruction network. Next, this optimized sampling pattern was implemented in an mGRE sequence using Cartesian fan-beam k-space segmenting and ordering for prospective scans. Furthermore, we propose to insert a recurrent temporal feature fusion module into the reconstruction network to capture signal redundancies along echo time. Our ablation studies show that both the optimized sampling pattern and proposed reconstruction strategy help improve the quality of the multi-echo image reconstructions. Generalization experiments show that LARO is robust on the test data with new pathologies and different sequence parameters. Our code is available at https://github.com/Jinwei1209/LARO-QSM.git.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Prospective Studies , Image Processing, Computer-Assisted/methods
4.
Ann Neurol ; 92(3): 486-502, 2022 09.
Article in English | MEDLINE | ID: mdl-35713309

ABSTRACT

OBJECTIVES: Neuropathological studies have shown that multiple sclerosis (MS) lesions are heterogeneous in terms of myelin/axon damage and repair as well as iron content. However, it remains a challenge to identify specific chronic lesion types, especially remyelinated lesions, in vivo in patients with MS. METHODS: We performed 3 studies: (1) a cross-sectional study in a prospective cohort of 115 patients with MS and 76 healthy controls, who underwent 3 T magnetic resonance imaging (MRI) for quantitative susceptibility mapping (QSM), myelin water fraction (MWF), and neurite density index (NDI) maps. White matter (WM) lesions in QSM were classified into 5 QSM lesion types (iso-intense, hypo-intense, hyperintense, lesions with hypo-intense rims, and lesions with paramagnetic rim legions [PRLs]); (2) a longitudinal study of 40 patients with MS to study the evolution of lesions over 2 years; (3) a postmortem histopathology-QSM validation study in 3 brains of patients with MS to assess the accuracy of QSM classification to identify neuropathological lesion types in 63 WM lesions. RESULTS: At baseline, hypo- and isointense lesions showed higher mean MWF and NDI values compared to other QSM lesion types (p < 0.0001). Further, at 2-year follow-up, hypo-/iso-intense lesions showed an increase in MWF. Postmortem analyses revealed that QSM highly accurately identifies (1) fully remyelinated areas as hypo-/iso-intense (sensitivity = 88.89% and specificity = 100%), (2) chronic inactive lesions as hyperintense (sensitivity = 71.43% and specificity = 92.00%), and (3) chronic active/smoldering lesions as PRLs (sensitivity = 92.86% and specificity = 86.36%). INTERPRETATION: These results provide the first evidence that it is possible to distinguish chronic MS lesions in a clinical setting, hereby supporting with new biomarkers to develop and assess remyelinating treatments. ANN NEUROL 2022;92:486-502.


Subject(s)
Multiple Sclerosis , Biomarkers , Brain/pathology , Cross-Sectional Studies , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Prospective Studies , Water
5.
J Magn Reson Imaging ; 57(6): 1621-1640, 2023 06.
Article in English | MEDLINE | ID: mdl-36748806

ABSTRACT

Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Male , Humans , Magnetic Resonance Imaging/methods , Liver , Iron , Abdomen , Brain , Brain Mapping
6.
Eur Radiol ; 33(1): 184-195, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35881183

ABSTRACT

OBJECTIVES: We aimed to define brain iron distribution patterns in subtypes of early-onset Alzheimer's disease (EOAD) by the use of quantitative susceptibility mapping (QSM). METHODS: EOAD patients prospectively underwent MRI on a 3-T scanner and concomitant clinical and neuropsychological evaluation, between 2016 and 2019. An age-matched control group was constituted of cognitively healthy participants at risk of developing AD. Volumetry of the hippocampus and cerebral cortex was performed on 3DT1 images. EOAD subtypes were defined according to the hippocampal to cortical volume ratio (HV:CTV). Limbic-predominant atrophy (LPMRI) is referred to HV:CTV ratios below the 25th percentile, hippocampal-sparing (HpSpMRI) above the 75th percentile, and typical-AD between the 25th and 75th percentile. Brain iron was estimated using QSM. QSM analyses were made voxel-wise and in 7 regions of interest within deep gray nuclei and limbic structures. Iron distribution in EOAD subtypes and controls was compared using an ANOVA. RESULTS: Sixty-eight EOAD patients and 43 controls were evaluated. QSM values were significantly higher in deep gray nuclei (p < 0.001) and limbic structures (p = 0.04) of EOAD patients compared to controls. Among EOAD subtypes, HpSpMRI had the highest QSM values in deep gray nuclei (p < 0.001) whereas the highest QSM values in limbic structures were observed in LPMRI (p = 0.005). QSM in deep gray nuclei had an AUC = 0.92 in discriminating HpSpMRI and controls. CONCLUSIONS: In early-onset Alzheimer's disease patients, we observed significant variations of iron distribution reflecting the pattern of brain atrophy. Iron overload in deep gray nuclei could help to identify patients with atypical presentation of Alzheimer's disease. KEY POINTS: • In early-onset AD patients, QSM indicated a significant brain iron overload in comparison with age-matched controls. • Iron load in limbic structures was higher in participants with limbic-predominant subtype. • Iron load in deep nuclei was more important in participants with hippocampal-sparing subtype.


Subject(s)
Alzheimer Disease , Iron Overload , Humans , Alzheimer Disease/pathology , Atrophy/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Iron Overload/diagnostic imaging , Iron , Brain Mapping/methods
7.
Magn Reson Med ; 87(6): 2979-2988, 2022 06.
Article in English | MEDLINE | ID: mdl-35092094

ABSTRACT

PURPOSE: To develop a 3D UNET convolutional neural network for rapid extraction of myelin water fraction (MWF) maps from six-echo fast acquisition with spiral trajectory and T2 -prep data and to evaluate its accuracy in comparison with multilayer perceptron (MLP) network. METHODS: The MWF maps were extracted from 138 patients with multiple sclerosis using an iterative three-pool nonlinear least-squares algorithm (NLLS) without and with spatial regularization (srNLLS), which were used as ground-truth labels to train, validate, and test UNET and MLP networks as a means to accelerate data fitting. Network testing was performed in 63 patients with multiple sclerosis and a numerically simulated brain phantom at SNR of 200, 100 and 50. RESULTS: Simulations showed that UNET reduced the MWF mean absolute error by 30.1% to 56.4% and 16.8% to 53.6% over the whole brain and by 41.2% to 54.4% and 21.4% to 49.4% over the lesions for predicting srNLLS and NLLS MWF, respectively, compared to MLP, with better performance at lower SNRs. UNET also outperformed MLP for predicting srNLLS MWF in the in vivo multiple-sclerosis brain data, reducing mean absolute error over the whole brain by 61.9% and over the lesions by 67.5%. However, MLP yielded 41.1% and 51.7% lower mean absolute error for predicting in vivo NLLS MWF over the whole brain and the lesions, respectively, compared with UNET. The whole-brain MWF processing time using a GPU was 0.64 seconds for UNET and 0.74 seconds for MLP. CONCLUSION: Subsecond whole-brain MWF extraction from fast acquisition with spiral trajectory and T2 -prep data using UNET is feasible and provides better accuracy than MLP for predicting MWF output of srNLLS algorithm.


Subject(s)
Multiple Sclerosis , Myelin Sheath , Algorithms , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Myelin Sheath/pathology , Water
8.
Magn Reson Med ; 87(3): 1583-1594, 2022 03.
Article in English | MEDLINE | ID: mdl-34719059

ABSTRACT

PURPOSE: To improve accuracy and speed of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) -based oxygen extraction fraction (OEF) mapping using a deep neural network (QQ-NET). METHODS: The 3D multi-echo gradient echo images were acquired in 34 ischemic stroke patients and 4 healthy subjects. Arterial spin labeling and diffusion weighted imaging (DWI) were also performed in the patients. NET was developed to solve the QQ model inversion problem based on Unet. QQ-based OEF maps were reconstructed with previously introduced temporal clustering, tissue composition, and total variation (CCTV) and NET. The results were compared in simulation, ischemic stroke patients, and healthy subjects using a two-sample Kolmogorov-Smirnov test. RESULTS: In the simulation, QQ-NET provided more accurate and precise OEF maps than QQ-CCTV with 150 times faster reconstruction speed. In the subacute stroke patients, OEF from QQ-NET had greater contrast-to-noise ratio (CNR) between DWI-defined lesions and their unaffected contralateral normal tissue than with QQ-CCTV: 1.9 ± 1.3 vs 6.6 ± 10.7 (p = 0.03). In healthy subjects, both QQ-CCTV and QQ-NET provided uniform OEF maps. CONCLUSION: QQ-NET improves the accuracy of QQ-based OEF with faster reconstruction.


Subject(s)
Deep Learning , Oxygen , Brain/diagnostic imaging , Brain Mapping , Cerebrovascular Circulation , Gray Matter , Humans , Magnetic Resonance Imaging , Oxygen Consumption , Oxygen Saturation
9.
Eur J Neurol ; 29(9): 2622-2630, 2022 09.
Article in English | MEDLINE | ID: mdl-35666174

ABSTRACT

BACKGROUND AND PURPOSE: There is growing recognition that chronic liver conditions influence brain health. The impact of liver fibrosis on dementia risk was unclear. We evaluated the association between liver fibrosis and incident dementia in a cohort study. METHODS: We performed a cohort analysis using data from the UK Biobank study, which prospectively enrolled adults starting in 2007, and continues to follow them. People with a Fibrosis-4 (FIB-4) liver fibrosis score >2.67 were categorized as at high risk of advanced fibrosis. The primary outcome was incident dementia, ascertained using a validated approach. We excluded participants with prevalent dementia at baseline. We used Cox proportional hazards models to evaluate the association between liver fibrosis and dementia while adjusting for potential confounders. RESULTS: Among 455,226 participants included in this analysis, the mean age was 56.5 years and 54% were women. Approximately 2.17% (95% confidence interval [CI] 2.13%-2.22%) had liver fibrosis. The rate of dementia per 1000 person-years was 1.76 (95% CI 1.50-2.07) in participants with liver fibrosis and 0.52 (95% CI 0.50-0.54) in those without. After adjusting for demographics, socioeconomic deprivation, educational attainment, metabolic syndrome, hypertension, diabetes, dyslipidemia, and tobacco and alcohol use, liver fibrosis was associated with an increased risk of dementia (hazard ratio 1.52, 95% CI 1.22-1.90). Results were robust to sensitivity analyses. Effect modification by sex, metabolic syndrome, and apolipoprotein E4 carrier status was not observed. CONCLUSION: Liver fibrosis in middle age was associated with an increased risk of incident dementia, independent of shared risk factors. Liver fibrosis may be an underrecognized risk factor for dementia.


Subject(s)
Dementia , Metabolic Syndrome , Adult , Biological Specimen Banks , Cohort Studies , Dementia/epidemiology , Female , Humans , Incidence , Liver Cirrhosis/epidemiology , Male , Middle Aged , Risk Factors , United Kingdom/epidemiology
10.
Magn Reson Med ; 86(3): 1586-1599, 2021 09.
Article in English | MEDLINE | ID: mdl-33797118

ABSTRACT

PURPOSE: Numerous studies report motion as the most detrimental source of noise and artifacts in fMRI. Current motion correction methods fail to completely address the motion problem. Retrospective techniques such as spatial realignment can correct for between-volume misalignment but fail to address within volume contamination and spin-history artifacts. Prospective motion correction can prevent spin-history artifacts but currently cannot update the gradients fast enough to remove k-space filling artifacts, calling for a hybrid approach to fully address these problems. THEORY AND METHODS: Motion can be mathematically formulated into the MR signal equation to describe the motion artifacts at their origin in k-space. From these equations, it is demonstrated that different motions have different effects on the signal. A novel motion correction algorithm is designed from these equations to remove motion-induced artifacts directly in k-space, discrete reconstruction of irregular fMRI trajectory (DRIFT). This method is evaluated rigorously using fMRI simulations and data from a rotating phantom inside the scanner. RESULTS: The results indicate that although some motion types have negligible effects on the MR signal, others produce catastrophic and lasting artifacts even after motion cessation. In simulation, DRIFT is able to remove motion artifacts in the absence of spin history. In a phantom scan, DRIFT significantly attenuates the motion artifacts in the fMRI data. CONCLUSION: Neither prospective nor retrospective motion correction methods could completely remove the motion artifacts from the fMRI data. However, DRIFT, as a retrospective technique, when combined with prospective motion correction, can eliminate a significant portion of motion artifacts.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain/diagnostic imaging , Motion , Prospective Studies , Retrospective Studies
11.
Magn Reson Med ; 85(2): 953-961, 2021 02.
Article in English | MEDLINE | ID: mdl-32783233

ABSTRACT

PURPOSE: To compare cortical gray matter oxygen extraction fraction (OEF) estimated from 2 MRI methods: (1) the quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level dependent imaging (qBOLD) (QSM+qBOLD or QQ), and (2) the dual-gas calibrated-BOLD (DGCB) in healthy subjects; and to investigate the validity of iso-cerebral metabolic rate of oxygen consumption assumption during hypercapnia using QQ. METHODS: In 10 healthy subjects, 3 tesla MRI including a multi-echo gradient echo sequence at baseline and hypercapnia for QQ, as well as an EPI dual-echo pseudo-continuous arterial spin labeling for DGCB, were performed under a hypercapnic and a hyperoxic condition. OEFs from QQ and DGCB were compared using region of interest analysis and paired t test. For QQ, cerebral metabolic rate of oxygen consumption = cerebral blood flow*OEF*arterial oxygen content was generated for both baseline and hypercapnia, which were compared. RESULTS: Average OEF in cortical gray matter across 10 subjects from QQ versus DGCB was 35.5 ± 6.7% versus 38.0 ± 9.1% (P = .49) at baseline and 20.7 ± 4.4% versus 28.4 ± 7.6% (P = .02) in hypercapnia: OEF in cortical gray matter was significantly reduced as measured in QQ (P < .01) and in DGCB (P < .01). Cerebral metabolic rate of oxygen consumption (in µmol O2 /min/100 g) was 168.2 ± 54.1 at baseline from DGCB and was 153.1 ± 33.8 at baseline and 126.4 ± 34.2 (P < .01) in hypercapnia from QQ. CONCLUSION: The differences in OEF obtained from QQ and DGCB are small and nonsignificant at baseline but are statistically significant during hypercapnia. In addition, QQ shows a cerebral metabolic rate of oxygen consumption decrease (17.4%) during hypercapnia.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cerebrovascular Circulation , Gray Matter , Humans , Oxygen , Oxygen Consumption
12.
Magn Reson Med ; 86(5): 2635-2646, 2021 11.
Article in English | MEDLINE | ID: mdl-34110656

ABSTRACT

PURPOSE: To improve the accuracy of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) based mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using temporal clustering, tissue composition, and total variation (CCTV). METHODS: Three-dimensional multi-echo gradient echo and arterial spin labeling images were acquired from 11 healthy subjects and 33 ischemic stroke patients. Diffusion-weighted imaging (DWI) was also obtained from patients. The CCTV mapping was developed for incorporating tissue-type information into clustering of the previous cluster analysis of time evolution (CAT) and applying total variation (TV). The QQ-based OEF and CMRO2 were reconstructed with CAT, CAT+TV (CATV), and the proposed CCTV, and results were compared using region-of-interest analysis, Kruskal-Wallis test, and post hoc Wilcoxson rank sum test. RESULTS: In simulation, CCTV provided more accurate and precise OEF than CAT or CATV. In healthy subjects, QQ-based OEF was less noisy and more uniform with CCTV than CAT. In subacute stroke patients, OEF with CCTV had a greater contrast-to-noise ratio between DWI-defined lesions and the unaffected contralateral side than with CAT or CATV: 1.9 ± 1.3 versus 1.1 ± 0.7 (P = .01) versus 0.7 ± 0.5 (P < .001). CONCLUSION: The CCTV mapping significantly improves the robustness of QQ-based OEF against noise.


Subject(s)
Gray Matter , Oxygen , Brain/diagnostic imaging , Cerebrovascular Circulation , Cluster Analysis , Humans , Magnetic Resonance Imaging , Oxygen Consumption
13.
Magn Reson Med ; 85(4): 2263-2277, 2021 04.
Article in English | MEDLINE | ID: mdl-33107127

ABSTRACT

PURPOSE: To use a deep neural network (DNN) for solving the optimization problem of water/fat separation and to compare supervised and unsupervised training. METHODS: The current T2∗ -IDEAL algorithm for solving water/fat separation is dependent on initialization. Recently, DNN has been proposed to solve water/fat separation without the need for suitable initialization. However, this approach requires supervised training of DNN using the reference water/fat separation images. Here we propose 2 novel DNN water/fat separation methods: 1) unsupervised training of DNN (UTD) using the physical forward problem as the cost function during training, and 2) no training of DNN using physical cost and backpropagation to directly reconstruct a single dataset. The supervised training of DNN, unsupervised training of DNN, and no training of DNN methods were compared with the reference T2∗ -IDEAL. RESULTS: All DNN methods generated consistent water/fat separation results that agreed well with T2∗ -IDEAL under proper initialization. CONCLUSION: The water/fat separation problem can be solved using unsupervised deep neural networks.


Subject(s)
Deep Learning , Algorithms , Neural Networks, Computer , Water
14.
Magn Reson Med ; 85(4): 2247-2262, 2021 04.
Article in English | MEDLINE | ID: mdl-33210310

ABSTRACT

PURPOSE: Proof-of-concept study of mapping renal blood flow vector field according to the inverse solution to a mass transport model of time resolved tracer-labeled MRI data. THEORY AND METHODS: To determine tissue perfusion according to the underlying physics of spatiotemporal tracer concentration variation, the mass transport equation is integrated over a voxel with an approximate microvascular network for fitting time-resolved tracer imaging data. The inverse solution to the voxelized transport equation provides the blood flow vector field, which is referred to as quantitative transport mapping (QTM). A numerical microvascular network modeling the kidney with computational fluid dynamics reference was used to verify the accuracy of QTM and the current Kety's method that uses a global arterial input function. Multiple post-label delay arterial spin labeling (ASL) of the kidney on seven subjects was used to assess QTM in vivo feasibility. RESULTS: Against the ground truth in the numerical model, the error in flow estimated by QTM (18.6%) was smaller than that in Kety's method (45.7%, 2.5-fold reduction). The in vivo kidney perfusion quantification by QTM (cortex: 443 ± 58 mL/100 g/min and medulla: 190 ± 90 mL/100 g/min) was in the range of that by Kety's method (482 ± 51 mL/100 g/min in the cortex and 242 ± 73 mL/100 g/min in the medulla), and QTM provided better flow homogeneity in the cortex region. CONCLUSIONS: QTM flow velocity mapping is feasible from multi-delay ASL MRI data based on inverting the transport equation. In a numerical simulation, QTM with deconvolution in space and time provided more accurate perfusion quantification than Kety's method with deconvolution in time only.


Subject(s)
Kidney , Renal Circulation , Humans , Kidney/diagnostic imaging , Magnetic Resonance Imaging , Microvessels/diagnostic imaging , Spin Labels
15.
Magn Reson Med ; 86(4): 2165-2178, 2021 10.
Article in English | MEDLINE | ID: mdl-34028868

ABSTRACT

PURPOSE: Typical quantitative susceptibility mapping (QSM) reconstruction steps consist of first estimating the magnetization field from the gradient-echo images, and then reconstructing the susceptibility map from the estimated field. The errors from the field-estimation steps may propagate into the final QSM map, and the noise in the estimated field map may no longer be zero-mean Gaussian noise, thus, causing streaking artifacts in the resulting QSM. A multiecho complex total field inversion (mcTFI) method was developed to compute the susceptibility map directly from the multiecho gradient echo images using an improved signal model that retains the Gaussian noise property in the complex domain. It showed improvements in QSM reconstruction over the conventional field-to-source inversion. METHODS: The proposed mcTFI method was compared with the nonlinear total field inversion (nTFI) method in a numerical brain with hemorrhage and calcification, the numerical brains provided by the QSM Challenge 2.0, 18 brains with intracerebral hemorrhage scanned at 3T, and 6 healthy brains scanned at 7T. RESULTS: Compared with nTFI, the proposed mcTFI showed more accurate QSM reconstruction around the lesions in the numerical simulations. The mcTFI reconstructed QSM also showed the best image quality with the least artifacts in the brains with intracerebral hemorrhage scanned at 3T and healthy brains scanned at 7T. CONCLUSION: The proposed multiecho complex total field inversion improved QSM reconstruction over traditional field-to-source inversion through better signal modeling.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain/diagnostic imaging , Brain Mapping
16.
NMR Biomed ; 34(1): e4412, 2021 01.
Article in English | MEDLINE | ID: mdl-32959425

ABSTRACT

To develop a method for noninvasive evaluation of liver fibrosis, we investigated the differential sensitivities of quantitative susceptibility mapping (QSM) and R2 * mapping using corrections for the effects of liver iron. Liver fibrosis is characterized by excessive accumulation of collagen and other extracellular matrix proteins. While collagen increases R2 * relaxation, measures of R2 * for fibrosis are confounded by liver iron, which may be present in the liver over a wide range of concentrations. The diamagnetic collagen contribution to susceptibility values measured by QSM is much less than the contribution of highly paramagnetic iron. In 19 ex vivo liver explants with and without fibrosis, QSM (χ), R2 * and proton density fat fraction (PDFF) maps were constructed from multiecho gradient-recalled echo (mGRE) sequence acquisition at 3 T. Median parameter values were recorded and differences between the MRI parameters in nonfibrotic vs. advanced fibrotic/cirrhotic samples were evaluated using Mann-Whitney U tests and receiver operating characteristic analyses. Logistic regression with stepwise feature selection was employed to evaluate the utility of combined MRI measurements for detection of fibrosis. Median R2 * increased in fibrotic vs. nonfibrotic liver samples (P = .041), while differences in χ and PDFF were nonsignificant (P = .545 and P = .395, respectively). Logistic regression identified the combination of χ and R2 * significant for fibrosis detection (logit [prediction] = -8.45 + 0.23 R2 * - 28.8 χ). For this classifier, a highly significant difference between nonfibrotic vs. advanced fibrotic/cirrhotic samples was observed (P = .002). The model exhibited an AUC of 0.909 (P = .003) for detection of advanced fibrosis/cirrhosis, which was substantially higher compared with AUCs of the individual parameters (AUC 0.591-0.784). An integrated QSM and R2 * analysis of mGRE 3 T imaging data is promising for noninvasive diagnostic assessment of liver fibrosis.


Subject(s)
Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging , Adolescent , Adult , Aged , Child , Child, Preschool , Feasibility Studies , Female , Humans , Infant , Infant, Newborn , Liver Cirrhosis/pathology , Logistic Models , Male , Middle Aged , Protons , ROC Curve , Young Adult
17.
J Magn Reson Imaging ; 54(6): 1843-1854, 2021 12.
Article in English | MEDLINE | ID: mdl-34117811

ABSTRACT

BACKGROUND: The perceived acuity of intracerebral hemorrhage (ICH) impacts the management of patients, both within emergent and outpatient/urgent settings. Morphology enabled dipole inversion (MEDI) quantitative susceptibility imaging (QSM) has improved characterization of ICH acuity, despite outstanding limitations in distinguishing blood products. PURPOSE/HYPOTHESIS: Using improved susceptibility quantification, novel postprocessing QSM method from multiecho complex total field inversion (mcTFI) may better discriminate between acute and subacute ICH, compared to MEDI. STUDY TYPE: Retrospective cohort study. SUBJECTS: A total of 121 subjects enrolled following positive computerized tomography (CT) findings for ICH. Subjects were grouped based on time between admission and MR imaging: hyperacute (<24 hours), acute (1-3 days), early subacute (3-7 days), and late subacute (7-18 days). FIELD STRENGTH/SEQUENCE: A multiecho gradient echo sequence at 3.0 T was paired with clinical noncontrast CT imaging. ASSESSMENT: A quantitative index (CTindex ) was derived based on relative intensities of blood on noncontrast CT. All images were co-registered, from which QSM parameters within the ICH area were assessed across groups, as well as the correlation with CTindex . STATISTICAL TESTS: Group differences were assessed using ANOVAs. Linear regressions between the CTindex , MEDI, and mcTFI measurements were used to assess their relationships. Statistical significance was set at P < 0.05. RESULTS: A total of 21 hyperacute, 72 acute, 21 early subacute, and 7 late-subacute patients were included in this analysis. Significant changes in blood susceptibility were found over time for the MEDI and mcTFI, although mcTFI better differentiated the hyperacute/acute from subacute stages. CTindex values within the ICH were more strongly correlated with mcTFI QSM (r = 0.727) than MEDI (r = 0.412) QSM. DATA CONCLUSION: McTFI susceptibility estimation demonstrated better correlation with ICH acuity as suggested by CT, providing an improved method to assess acuity of intracranial blood products in clinical settings to identify cases that may require acute intervention. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Cerebral Hemorrhage , Magnetic Resonance Imaging , Cerebral Hemorrhage/diagnostic imaging , Humans , Linear Models , Retrospective Studies , Tomography, X-Ray Computed
18.
Neuroimage ; 211: 116579, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31981779

ABSTRACT

Deep learning (DL) is increasingly used to solve ill-posed inverse problems in medical imaging, such as reconstruction from noisy and/or incomplete data, as DL offers advantages over conventional methods that rely on explicit image features and hand engineered priors. However, supervised DL-based methods may achieve poor performance when the test data deviates from the training data, for example, when it has pathologies not encountered in the training data. Furthermore, DL-based image reconstructions do not always incorporate the underlying forward physical model, which may improve performance. Therefore, in this work we introduce a novel approach, called fidelity imposed network edit (FINE), which modifies the weights of a pre-trained reconstruction network for each case in the testing dataset. This is achieved by minimizing an unsupervised fidelity loss function that is based on the forward physical model. FINE is applied to two important inverse problems in neuroimaging: quantitative susceptibility mapping (QSM) and under-sampled image reconstruction in MRI. Our experiments demonstrate that FINE can improve reconstruction accuracy.


Subject(s)
Brain/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Deep Learning , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Neuroimaging/methods , Adult , Computer Simulation , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Neuroimaging/standards
19.
Magn Reson Med ; 83(1): 271-285, 2020 01.
Article in English | MEDLINE | ID: mdl-31402519

ABSTRACT

PURPOSE: To develop an automated adaptive preconditioner for QSM reconstruction with improved susceptibility quantification accuracy and increased image quality. THEORY AND METHODS: The total field was used to rapidly produce an approximate susceptibility map, which was then averaged and trended over R2∗ binning to generate a spatially varying distribution of preconditioning values. This automated adaptive preconditioner was used to reconstruct QSM via total field inversion and was compared with its empirical counterparts in a numerical simulation, a brain experiment with 5 healthy subjects and 5 patients with intracerebral hemorrhage, and a cardiac experiment with 3 healthy subjects. RESULTS: Among evaluated preconditioners, the automated adaptive preconditioner achieved the fastest convergence in reducing the RMSE of the QSM in the simulation, suppressed hemorrhage-associated artifacts while preserving surrounding brain tissue contrasts, and provided cardiac chamber oxygenation values consistent with those reported in the literature. CONCLUSION: An automated adaptive preconditioner allows high-quality QSM from the total field in imaging various anatomies with dynamic susceptibility ranges.


Subject(s)
Brain/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain Mapping , Computer Simulation , Humans , Models, Statistical , Normal Distribution , Oxygen/chemistry , Pattern Recognition, Automated , Phantoms, Imaging
20.
Magn Reson Med ; 84(3): 1501-1509, 2020 09.
Article in English | MEDLINE | ID: mdl-32141644

ABSTRACT

PURPOSE: To develop a nonlinear preconditioned total field-inversion algorithm using the MEDI toolbox (MEDInpt) for robust QSM of carotid plaques and evaluate its performance in comparison with a local field-inversion algorithm (STI Suite) previously applied to carotid QSM. METHODS: Numerical simulation and in vivo carotid QSM were performed to compare the MEDInpt and STI Suite algorithms. Multicontrast MRI was used as the reference standard for detecting calcified plaque and intraplaque hemorrhage (IPH). A total of 5 healthy volunteers and 11 patients with at least one significant carotid artery stenosis were enrolled in this study. RESULTS: In the numerical carotid phantom, the relative susceptibility errors for calcified plaque and IPH were reduced from -63.2% and -56.5% with STI Suite to -13.0% and -24.2% with MEDInpt, respectively. In humans, MEDInpt provided a higher QSM quality score and better detection of calcification and IPH than STI Suite. Although all calcifications and IPHs detected on multicontrast MRI could be seen on QSM obtained with MEDInpt, only 50% of calcified plaques and 83% of IPHs could be captured on QSM obtained with STI Suite. CONCLUSION: MEDInpt can resolve calcification and IPH in advanced atherosclerotic carotid plaques. Compared with STI Suite, MEDInpt provided better QSM quality and has the potential to improve the detection of these plaque components.


Subject(s)
Carotid Stenosis , Plaque, Atherosclerotic , Carotid Arteries/diagnostic imaging , Carotid Stenosis/diagnostic imaging , Hemorrhage , Humans , Magnetic Resonance Imaging , Plaque, Atherosclerotic/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL