Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Brain ; 147(3): 923-935, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37757857

ABSTRACT

The development of dementia is a devastating aspect of Parkinson's disease (PD), affecting nearly half of patients within 10 years post-diagnosis. For effective therapies to prevent and slow progression to PD dementia (PDD), the key mechanisms that determine why some people with PD develop early dementia, while others remain cognitively unaffected, need to be understood. Neuroinflammation and tau protein accumulation have been demonstrated in post-mortem PD brains, and in many other neurodegenerative disorders leading to dementia. However, whether these processes mediate dementia risk early on in the PD disease course is not established. To this end, we used PET neuroimaging with 11C-PK11195 to index neuroinflammation and 18F-AV-1451 for misfolded tau in early PD patients, stratified according to dementia risk in our 'Neuroinflammation and Tau Accumulation in Parkinson's Disease Dementia' (NET-PDD) study. The NET-PDD study longitudinally assesses newly-diagnosed PD patients in two subgroups at low and high dementia risk (stratified based on pentagon copying, semantic fluency, MAPT genotype), with comparison to age- and sex-matched controls. Non-displaceable binding potential (BPND) in 43 brain regions (Hammers' parcellation) was compared between groups (pairwise t-tests), and associations between BPND of the tracers tested (linear-mixed-effect models). We hypothesized that people with higher dementia risk have greater inflammation and/or tau accumulation in advance of significant cognitive decline. We found significantly elevated neuroinflammation (11C-PK11195 BPND) in multiple subcortical and restricted cortical regions in the high dementia risk group compared with controls, while in the low-risk group this was limited to two cortical areas. The high dementia risk group also showed significantly greater neuroinflammation than the low-risk group concentrated on subcortical and basal ganglia regions. Neuroinflammation in most of these regions was associated with worse cognitive performance (Addenbrooke's Cognitive Examination-III score). Overall neuroinflammation burden also correlated with serum levels of pro-inflammatory cytokines. In contrast, increases in 18F-AV-1451 (tau) BPND in PD versus controls were restricted to subcortical regions where off-target binding is typically seen, with no relationship to cognition found. Whole-brain 18F-AV-1451 burden correlated with serum phosphorylated tau181 levels. Although there was minimal regional tau accumulation in PD, regional neuroinflammation and tau burden correlated in PD participants, with the strongest association in the high dementia risk group, suggesting possible co-localization of these pathologies. In conclusion, our findings suggest that significant regional neuroinflammation in early PD might underpin higher risk for PDD development, indicating neuroinflammation as a putative early modifiable aetiopathological disease factor to prevent or slow dementia development using immunomodulatory strategies.


Subject(s)
Dementia , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Neuroinflammatory Diseases , Dementia/diagnostic imaging , Basal Ganglia , Inflammation/complications , Disease Progression
2.
Brain ; 146(8): 3484-3499, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36811945

ABSTRACT

Chronic post-concussive symptoms are common after mild traumatic brain injury (mTBI) and are difficult to predict or treat. Thalamic functional integrity is particularly vulnerable in mTBI and may be related to long-term outcomes but requires further investigation. We compared structural MRI and resting state functional MRI in 108 patients with a Glasgow Coma Scale (GCS) of 13-15 and normal CT, and 76 controls. We examined whether acute changes in thalamic functional connectivity were early markers for persistent symptoms and explored neurochemical associations of our findings using PET data. Of the mTBI cohort, 47% showed incomplete recovery 6 months post-injury. Despite the absence of structural changes, we found acute thalamic hyperconnectivity in mTBI, with specific vulnerabilities of individual thalamic nuclei. Acute fMRI markers differentiated those with chronic post-concussive symptoms, with time- and outcome-dependent relationships in a sub-cohort followed longitudinally. Moreover, emotional and cognitive symptoms were associated with changes in thalamic functional connectivity to known serotonergic and noradrenergic targets, respectively. Our findings suggest that chronic symptoms can have a basis in early thalamic pathophysiology. This may aid identification of patients at risk of chronic post-concussive symptoms following mTBI, provide a basis for development of new therapies and facilitate precision medicine application of these therapies.


Subject(s)
Brain Concussion , Brain Injuries , Post-Concussion Syndrome , Humans , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Post-Concussion Syndrome/diagnostic imaging , Thalamus/diagnostic imaging , Emotions , Magnetic Resonance Imaging , Brain
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301891

ABSTRACT

Clinical research into consciousness has long focused on cortical macroscopic networks and their disruption in pathological or pharmacological consciousness perturbation. Despite demonstrating diagnostic utility in disorders of consciousness (DoC) and monitoring anesthetic depth, these cortico-centric approaches have been unable to characterize which neurochemical systems may underpin consciousness alterations. Instead, preclinical experiments have long implicated the dopaminergic ventral tegmental area (VTA) in the brainstem. Despite dopaminergic agonist efficacy in DoC patients equally pointing to dopamine, the VTA has not been studied in human perturbed consciousness. To bridge this translational gap between preclinical subcortical and clinical cortico-centric perspectives, we assessed functional connectivity changes of a histologically characterized VTA using functional MRI recordings of pharmacologically (propofol sedation) and pathologically perturbed consciousness (DoC patients). Both cohorts demonstrated VTA disconnection from the precuneus and posterior cingulate (PCu/PCC), a main default mode network node widely implicated in consciousness. Strikingly, the stronger VTA-PCu/PCC connectivity was, the more the PCu/PCC functional connectome resembled its awake configuration, suggesting a possible neuromodulatory relationship. VTA-PCu/PCC connectivity increased toward healthy control levels only in DoC patients who behaviorally improved at follow-up assessment. To test whether VTA-PCu/PCC connectivity can be affected by a dopaminergic agonist, we demonstrated in a separate set of traumatic brain injury patients without DoC that methylphenidate significantly increased this connectivity. Together, our results characterize an in vivo dopaminergic connectivity deficit common to reversible and chronic consciousness perturbation. This noninvasive assessment of the dopaminergic system bridges preclinical and clinical work, associating dopaminergic VTA function with macroscopic network alterations, thereby elucidating a critical aspect of brainstem-cortical interplay for consciousness.


Subject(s)
Brain Injuries, Traumatic/complications , Brain Stem/pathology , Connectome , Consciousness Disorders/pathology , Dopamine/metabolism , Propofol/pharmacology , Ventral Tegmental Area/pathology , Wakefulness/drug effects , Adolescent , Adult , Aged , Brain Stem/drug effects , Case-Control Studies , Consciousness Disorders/etiology , Consciousness Disorders/metabolism , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Ventral Tegmental Area/drug effects , Young Adult
4.
Neuroimage ; 254: 119128, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35331869

ABSTRACT

Small world topologies are thought to provide a valuable insight into human brain organisation and consciousness. However, functional magnetic resonance imaging studies in consciousness have not yielded consistent results. Given the importance of dynamics for both consciousness and cognition, here we investigate how the diversity of small world dynamics (quantified by sample entropy; dSW-E1) scales with decreasing levels of awareness (i.e., sedation and disorders of consciousness). Paying particular attention to result reproducibility, we show that dSW-E is a consistent predictor of levels of awareness even when controlling for the underlying functional connectivity dynamics. We find that dSW-E of subcortical, and cortical areas are predictive, with the former showing higher and more robust effect sizes across analyses. We find that the network dynamics of intermodular communication in the cerebellum also have unique predictive power for levels of awareness. Consequently, we propose that the dynamic reorganisation of the functional information architecture, in particular of the subcortex, is a characteristic that emerges with awareness and has explanatory power beyond that of the complexity of dynamic functional connectivity.


Subject(s)
Consciousness , Nerve Net , Brain , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Reproducibility of Results
5.
Neurocrit Care ; 35(Suppl 1): 37-54, 2021 07.
Article in English | MEDLINE | ID: mdl-34236622

ABSTRACT

AIM: In order to successfully detect, classify, prognosticate, and develop targeted therapies for patients with disorders of consciousness (DOC), it is crucial to improve our mechanistic understanding of how severe brain injuries result in these disorders. METHODS: To address this need, the Curing Coma Campaign convened a Mechanisms Sub-Group of the Coma Science Work Group (CSWG), aiming to identify the most pressing knowledge gaps and the most promising approaches to bridge them. RESULTS: We identified a key conceptual gap in the need to differentiate the neural mechanisms of consciousness per se, from those underpinning connectedness to the environment and behavioral responsiveness. Further, we characterised three fundamental gaps in DOC research: (1) a lack of mechanistic integration between structural brain damage and abnormal brain function in DOC; (2) a lack of translational bridges between micro- and macro-scale neural phenomena; and (3) an incomplete exploration of possible synergies between data-driven and theory-driven approaches. CONCLUSION: In this white paper, we discuss research priorities that would enable us to begin to close these knowledge gaps. We propose that a fundamental step towards this goal will be to combine translational, multi-scale, and multimodal data, with new biomarkers, theory-driven approaches, and computational models, to produce an integrated account of neural mechanisms in DOC. Importantly, we envision that reciprocal interaction between domains will establish a "virtuous cycle," leading towards a critical vantage point of integrated knowledge that will enable the advancement of the scientific understanding of DOC and consequently, an improvement of clinical practice.


Subject(s)
Brain Injuries , Consciousness , Coma/diagnosis , Coma/therapy , Consciousness Disorders/diagnosis , Consciousness Disorders/therapy , Humans
7.
Neuroimage Clin ; 36: 103253, 2022.
Article in English | MEDLINE | ID: mdl-36451358

ABSTRACT

Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.


Subject(s)
COVID-19 , Humans , COVID-19/complications , SARS-CoV-2 , Prospective Studies , Brain , Magnetic Resonance Imaging
8.
Front Neurosci ; 15: 643871, 2021.
Article in English | MEDLINE | ID: mdl-33737863

ABSTRACT

"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.

9.
Sci Rep ; 9(1): 14051, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31575899

ABSTRACT

Neuromodulation ensures that neural circuits produce output that is flexible whilst remaining within an optimal operational range. The neuromodulator acetylcholine is released during locomotion to regulate spinal motor circuits. However, the range of receptors and downstream mechanisms by which acetylcholine acts have yet to be fully elucidated. We therefore investigated metabotropic acetylcholine receptor-mediated modulation by using isolated spinal cord preparations from neonatal mice in which locomotor-related output can be induced pharmacologically. We report that M2 receptor blockade decreases the frequency and amplitude of locomotor-related activity, whilst reducing its variability. In contrast, M3 receptor blockade destabilizes locomotor-related bursting. Motoneuron recordings from spinal cord slices revealed that activation of M2 receptors induces an outward current, decreases rheobase, reduces the medium afterhyperpolarization, shortens spike duration and decreases synaptic inputs. In contrast, M3 receptor activation elicits an inward current, increases rheobase, extends action potential duration and increases synaptic inputs. Analysis of miniature postsynaptic currents support that M2 and M3 receptors modulate synaptic transmission via different mechanisms. In summary, we demonstrate that M2 and M3 receptors have opposing modulatory actions on locomotor circuit output, likely reflecting contrasting cellular mechanisms of action. Thus, intraspinal cholinergic systems mediate balanced, multimodal control of spinal motor output.


Subject(s)
Acetylcholine/metabolism , Locomotion/physiology , Motor Neurons/metabolism , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/metabolism , Spinal Cord/metabolism , Acetylcholine/physiology , Action Potentials/drug effects , Animals , Animals, Newborn , Diamines/pharmacology , In Vitro Techniques , Mice , Mice, Inbred C57BL , Motor Neurons/physiology , Muscarine/pharmacology , Piperidines/pharmacology , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/physiology , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/physiology , Spinal Cord/physiology
SELECTION OF CITATIONS
SEARCH DETAIL