Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Blood ; 140(10): 1104-1118, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35878001

ABSTRACT

T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Lymphoma, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antigens, CD19 , Antineoplastic Agents/therapeutic use , Humans , Immunotherapy/methods , Lymphoma, B-Cell/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes
2.
Clin Exp Med ; 24(1): 155, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003408

ABSTRACT

Knowledge of the molecular pathogenesis of acute myeloid leukemia has advanced in recent years. Despite novel treatment options, acute myeloid leukemia remains a survival challenge for elderly patients. We have recently shown that the triphosphohydrolase SAMHD1 is one of the factors determining resistance to Ara-C treatment. Here, we designed and tested novel and simpler virus-like particles incorporating the lentiviral protein Vpx to efficiently and transiently degrade SAMHD1 and increase the efficacy of Ara-C treatment. The addition of minute amounts of lentiviral Rev protein during production enhanced the generation of virus-like particles. In addition, we found that our 2nd generation of virus-like particles efficiently targeted and degraded SAMHD1 in AML cell lines with high levels of SAMHD1, thereby increasing Ara-CTP levels and response to Ara-C treatment. Primary AML blasts were generally less responsive to VLP treatment. In summary, we have been able to generate novel and simpler virus-like particles that can efficiently deliver Vpx to target cells.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Cytarabine/pharmacology , Cytarabine/therapeutic use , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Cell Line, Tumor , Lentivirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL