Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 33(9-10): 524-535, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30862660

ABSTRACT

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.


Subject(s)
Gene Expression Regulation, Developmental/genetics , MyoD Protein/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factor HES-1/metabolism , Animals , Cells, Cultured , Mice , MyoD Protein/genetics , Receptors, Notch/metabolism , Signal Transduction , Transcription Factor HES-1/genetics
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769095

ABSTRACT

Critical illness myopathy (CIM) is an acquired, devastating, multifactorial muscle-wasting disease with incomplete recovery. The impact on hospital costs and permanent loss of quality of life is enormous. Incomplete recovery might imply that the function of muscle stem cells (MuSC) is impaired. We tested whether epigenetic alterations could be in part responsible. We characterized human muscle stem cells (MuSC) isolated from early CIM and analyzed epigenetic alterations (CIM n = 15, controls n = 21) by RNA-Seq, immunofluorescence, analysis of DNA repair, and ATAC-Seq. CIM-MuSC were transplanted into immunodeficient NOG mice to assess their regenerative potential. CIM-MuSC exhibited significant growth deficits, reduced ability to differentiate into myotubes, and impaired DNA repair. The chromatin structure was damaged, as characterized by alterations in mRNA of histone 1, depletion or dislocation of core proteins of nucleosome remodeling and deacetylase complex, and loosening of multiple nucleosome-spanning sites. Functionally, CIM-MuSC had a defect in building new muscle fibers. Further, MuSC obtained from the electrically stimulated muscle of CIM patients was very similar to control MuSC, indicating the impact of muscle contraction in the onset of CIM. CIM not only affects working skeletal muscle but has a lasting and severe epigenetic impact on MuSC.


Subject(s)
Mi-2 Nucleosome Remodeling and Deacetylase Complex , Muscular Diseases , Humans , Animals , Mice , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Critical Illness , Quality of Life , Muscular Diseases/metabolism , Muscle, Skeletal/metabolism , Stem Cells
3.
Ann Neurol ; 89(5): 967-978, 2021 05.
Article in English | MEDLINE | ID: mdl-33576057

ABSTRACT

OBJECTIVE: Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD. METHODS: We collected a longitudinal series of functional assessments from 187 patients with dysferlinopathy over 3 years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and nonambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories. RESULTS: The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3 to 8 years post symptom onset at baseline. INTERPRETATION: The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinical practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy. ANN NEUROL 2021;89:967-978.


Subject(s)
Muscular Dystrophies, Limb-Girdle/diagnosis , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Child , Clinical Trials as Topic/methods , Cohort Studies , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Muscular Dystrophies, Limb-Girdle/physiopathology , Muscular Dystrophies, Limb-Girdle/psychology , Psychometrics , Treatment Outcome , Young Adult
4.
Muscle Nerve ; 65(5): 531-540, 2022 05.
Article in English | MEDLINE | ID: mdl-35179231

ABSTRACT

INTRODUCTION/AIMS: There is debate about whether and to what extent either respiratory or cardiac dysfunction occurs in patients with dysferlinopathy. This study aimed to establish definitively whether dysfunction in either system is part of the dysferlinopathy phenotype. METHODS: As part of the Jain Foundation's International Clinical Outcome Study (COS) for dysferlinopathy, objective measures of respiratory and cardiac function were collected twice, with a 3-y interval between tests, in 188 genetically confirmed patients aged 11-86 y (53% female). Measures included forced vital capacity (FVC), electrocardiogram (ECG), and echocardiogram (echo). RESULTS: Mean FVC was 90% predicted at baseline, decreasing to 88% at year 3. FVC was less than 80% predicted in 44 patients (24%) at baseline and 48 patients (30%) by year 3, including ambulant participants. ECGs showed P-wave abnormalities indicative of delayed trans-atrial conduction in 58% of patients at baseline, representing a risk for developing atrial flutter or fibrillation. The prevalence of impaired left ventricular function or hypertrophy was comparable to that in the general population. DISCUSSION: These results demonstrate clinically significant respiratory impairment and abnormal atrial conduction in some patients with dysferlinopathy. Therefore, we recommend that annual or biannual follow-up should include FVC measurement, enquiry about arrhythmia symptoms and peripheral pulse palpation to assess cardiac rhythm. However, periodic specialist cardiac review is probably not warranted unless prompted by symptoms or abnormal pulse findings.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Electrocardiography , Female , Humans , Longitudinal Studies , Male , Muscular Dystrophies, Limb-Girdle/genetics , Phenotype
5.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555163

ABSTRACT

LMNA-related muscular dystrophy is an autosomal-dominant progressive disorder caused by mutations in LMNA. LMNA missense mutations are becoming correctable with CRISPR/Cas9-derived tools. Evaluating the functional recovery of LMNA after gene editing bears challenges as there is no reported direct loss of function of lamin A/C proteins in patient-derived cells. The proteins encoded by LMNA are lamins A/C, important ubiquitous nuclear envelope proteins but absent in pluripotent stem cells. We induced lamin A/C expression in induced pluripotent stem cells (iPSCs) of two patients with LMNA-related muscular dystrophy, NM_170707.4 (LMNA): c.1366A > G, p.(Asn456Asp) and c.1494G > T, p.(Trp498Cys), using a short three-day, serum-induced differentiation protocol and analyzed expression profiles of co-regulated genes, examples being COL1A2 and S100A6. We then performed precise gene editing of LMNA c.1366A > G using the near-PAMless (PAM: protospacer-adjacent motif) cytosine base editor. We show that the mutation can be repaired to 100% efficiency in individual iPSC clones. The fast differentiation protocol provided a functional readout and demonstrated increased lamin A/C expression as well as normalized expression of co-regulated genes. Collectively, our findings demonstrate the power of CRISPR/Cas9-mediated gene correction and effective outcome measures in a disease with, so far, little perspective on therapies.


Subject(s)
Lamin Type A , Muscular Dystrophies , Humans , Lamin Type A/genetics , Collagen Type I/genetics , Mutation , Muscular Dystrophies/genetics , Gene Expression
6.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216514

ABSTRACT

Beside their beneficial effects on cardiovascular events, statins are thought to contribute to insulin resistance and type-2 diabetes. It is not known whether these effects are long-term events from statin-treatment or already triggered with the first statin-intake. Skeletal muscle is considered the main site for insulin-stimulated glucose uptake and therefore, a primary target for insulin resistance in the human body. We analyzed localization and expression of proteins related to GLUT4 mediated glucose uptake via AMPKα or AKT in human skeletal muscle tissue from patients with statin-intake >6 months and in primary human myotubes after 96 h statin treatment. The ratio for AMPKα activity significantly increased in human skeletal muscle cells treated with statins for long- and short-term. Furthermore, the insulin-stimulated counterpart, AKT, significantly decreased in activity and protein level, while GSK3ß and mTOR protein expression reduced in statin-treated primary human myotubes, only. However, GLUT4 was normally distributed whereas CAV3 was internalized from plasma membrane around the nucleus in statin-treated primary human myotubes. Statin-treatment activates AMPKα-dependent glucose uptake and remains active after long-term statin treatment. Permanent blocking of its insulin-dependent counterpart AKT activation may lead to metabolic inflexibility and insulin resistance in the long run and may be a direct consequence of statin-treatment.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Insulin Resistance/physiology , Insulin/metabolism , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Aged , Female , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Male , Middle Aged , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
7.
J Cardiovasc Magn Reson ; 23(1): 130, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34743704

ABSTRACT

AIM: Muscular dystrophy (MD) is a progressive disease with predominantly muscular symptoms. Myotonic dystrophy type II (MD2) and facioscapulohumeral muscular dystrophy type 1 (FSHD1) are gaining an increasing awareness, but data on cardiac involvement are conflicting. The aim of this study was to determine a progression of cardiac remodeling in both entities by applying cardiovascular magnetic resonance (CMR) and evaluate its potential relation to arrhythmias as well as to conduction abnormalities. METHODS AND RESULTS: 83 MD2 and FSHD1 patients were followed. The participation was 87% in MD2 and 80% in FSHD1. 1.5 T CMR was performed to assess functional parameters as well as myocardial tissue characterization applying T1 and T2 mapping, fat/water-separated imaging and late gadolinium enhancement. Focal fibrosis was detected in 23% of MD2) and 33% of FSHD1 subjects and fat infiltration in 32% of MD2 and 28% of FSHD1 subjects, respectively. The incidence of all focal findings was higher at follow-up. T2 decreased, whereas native T1 remained stable. Global extracellular volume fraction (ECV) decreased similarly to the fibrosis volume while the total cell volume remained unchanged. All patients with focal fibrosis showed a significant increase in left ventricular (LV) and right ventricular (RV) volumes. An increase of arrhythmic events was observed. All patients with ventricular arrhythmias had focal myocardial changes and an increased volume of both ventricles (LV end-diastolic volume (EDV) p = 0.003, RVEDV p = 0.031). Patients with supraventricular tachycardias had a significantly higher left atrial volume (p = 0.047). CONCLUSION: We observed a remarkably fast and progressive decline of cardiac morphology and function as well as a progression of rhythm disturbances, even in asymptomatic patients with a potential association between an increase in arrhythmias and progression of myocardial tissue damage, such as focal fibrosis and fat infiltration, exists. These results suggest that MD2 and FSHD1 patients should be carefully followed-up to identify early development of remodeling and potential risks for the development of further cardiac events even in the absence of symptoms. Trial registration ISRCTN, ID ISRCTN16491505. Registered 29 November 2017 - Retrospectively registered, http://www.isrctn.com/ISRCTN16491505.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Facioscapulohumeral , Myotonic Dystrophy , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Contrast Media , Fibrosis , Follow-Up Studies , Gadolinium , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Muscular Dystrophy, Facioscapulohumeral/diagnostic imaging , Myocardium/pathology , Myotonic Dystrophy/diagnostic imaging , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left
8.
Internist (Berl) ; 62(8): 827-840, 2021 Aug.
Article in German | MEDLINE | ID: mdl-34143250

ABSTRACT

Statins are among the most frequently prescribed drugs in Germany. Their benefits in lowering cardiovascular risk are beyond dispute. Nevertheless, many patients complain of side effects from statin therapy, including statin-associated muscle symptoms (SAMS) in particular. Despite their relative frequency, it is difficult to objectively diagnose them, as the time until appearance of first symptoms, the nature of the complaints and the severity of muscle problems vary widely. This narrative review summarizes the causes of SAMS as well as new possibilities regarding their diagnosis and therapy.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Germany , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Muscles
9.
J Cardiovasc Magn Reson ; 21(1): 25, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31030674

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is an autosomal dominant and the third most common inherited muscle disease. Cardiac involvement is currently described in several muscular dystrophies (MD), but there are conflicting reports in FSHD1. Mostly, FSHD1 is recognized as MD with infrequent cardiac involvement, but sudden cardiac deaths are reported in single cases. The aim of this study is to investigate whether subclinical cardiac involvement in FSHD1 patients is detectable in preserved left ventricular systolic function applying cardiovascular magnetic resonance (CMR). METHODS: We prospectively included patients with genetically confirmed FSHD1 (n = 52, 48 ± 15 years) and compared them with 29 healthy age-matched controls using a 1.5 T CMR scanner. Myocardial tissue differentiation was performed qualitatively using focal fibrosis imaging (late gadolinium enhancement (LGE)), fat imaging (multi-echo sequence for fat/water-separation) and parametric T2- and T1-mapping for quantifying inflammation and diffuse fibrosis. Extracellular volume fraction was calculated. A 12-lead electrocardiogram and 24-h Holter were performed for the assessment of MD-specific Groh-criteria and arrhythmia. RESULTS: Focal fibrosis by LGE was present in 13 patients (25%,10 men), fat infiltration in 7 patients (13%,5 men). T2 values did not differ between FSHD1 and healthy controls. Native T1 mapping revealed significantly higher values in patients (global native myocardial T1 values basal: FSHD1: 1012 ± 26 ms vs. controls: 985 ± 28 ms, p < 0.01, medial FSHD1: 994 ± 37 ms vs. controls: 982 ± 28 ms, p = 0.028). This was also evident in regions adjacent to focal fibrosis, indicating diffuse fibrosis. Groh-criteria were positive in 1 patient. In Holter, arrhythmic events were recorded in 10/43 subjects (23%). CONCLUSIONS: Patients with FSHD1 and preserved left ventricular ejection fraction present focal and diffuse myocardial injury. Longitudinal multi-center trials are needed to define the impact of myocardial changes as well as a relation between myocardial injury and arrhythmias on long-term prognosis and therapeutic decision-making. TRIAL REGISTRATION: ISRCTN registry with study ID ISRCTN13744381 .


Subject(s)
Cardiomyopathies/diagnostic imaging , Magnetic Resonance Imaging, Cine , Muscular Dystrophy, Facioscapulohumeral/complications , Stroke Volume , Ventricular Function, Left , Adult , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Asymptomatic Diseases , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Case-Control Studies , Cross-Sectional Studies , Female , Fibrosis , Humans , Male , Middle Aged , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Myocardium/pathology , Predictive Value of Tests , Prognosis , Prospective Studies , Systole
11.
J Neurol Neurosurg Psychiatry ; 89(10): 1071-1081, 2018 10.
Article in English | MEDLINE | ID: mdl-29735511

ABSTRACT

BACKGROUND AND OBJECTIVE: Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. METHODS: We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. RESULTS: In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS: The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. CLINICAL TRIAL REGISTRATION: NCT01676077.


Subject(s)
Muscle, Skeletal/diagnostic imaging , Muscular Dystrophies, Limb-Girdle/diagnostic imaging , Adult , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged
12.
Hum Mol Genet ; 24(14): 4049-60, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25904108

ABSTRACT

The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies.


Subject(s)
Membrane Proteins/genetics , Muscle Proteins/genetics , RNA Precursors/genetics , Spliceosomes/genetics , Trans-Splicing , Animals , Cells, Cultured , Computational Biology , Dysferlin , Humans , Introns , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Myoblasts/cytology , Myoblasts/metabolism , RNA Precursors/metabolism , RNA Splice Sites , Spliceosomes/metabolism
13.
J Autoimmun ; 75: 118-129, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27522114

ABSTRACT

Idiopathic inflammatory myopathies (IIMs) are diseases with muscle weakness, morphologically characterized by inflammatory infiltration and increased expression of MHC class I molecule on myofibers. Immunoproteasome, as a proteolytic complex that shapes the repertoire of antigenic peptides, has been previously demonstrated to be over-expressed in IIMs at mRNA level. In this study, we investigated the expression and the function of the immunoproteasome in IIMs in more detail. As shown by immunofluorescence staining, expression of relevant players of the immunoproteasome was detectable in the inflamed skeletal muscle tissue from IIM patients. In fact, two subunits of the immunoproteasome, ß1i or ß5i were upregulated in sporadic inclusion body myositis, immune-mediated necrotizing myopathies and dermatomyositis muscle biopsies and co-localized with the MHC class I expressing myofibers. Double immunofluorescence revealed that both myofibers and muscle infiltrating cells, including CD8+ T-cells and CD68 + macrophages in IIMs expressed ß1i or ß5i. In addition, we have also investigated the role of the immunoproteasome in myoblasts during in vitro inflammatory conditions. Using human primary myoblasts cultures we found that pro-inflammatory cytokines, TNF-α or IFN-γ upregulate ß1i or ß5i. Selective inhibition or depletion of ß5i amplified the TNF-α or IFN-γ mediated expression of cytokines/chemokines (myokines) in myoblasts. Furthermore, we demonstrated that specific inhibitors of ß1i or ß5i reduced the cell surface expression of MHC class I in myoblasts induced by IFN-γ. Taken together, our data suggest that the immunoproteasome is involved in pathologic MHC class I expression and maintenance of myokine production in IIMs. Thus, induction of the immunoproteasome was identified as a pathomechanism underlying inflammation in IIMs.


Subject(s)
Cytokines/immunology , Histocompatibility Antigens Class I/immunology , Muscle, Skeletal/immunology , Myositis/immunology , Proteasome Endopeptidase Complex/immunology , Adult , Aged , Aged, 80 and over , Blotting, Western , Cells, Cultured , Child, Preschool , Cytokines/genetics , Cytokines/metabolism , Dermatomyositis/genetics , Dermatomyositis/immunology , Dermatomyositis/metabolism , Female , Gene Expression/drug effects , Gene Expression/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Interferon-gamma/pharmacology , Male , Microscopy, Fluorescence , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myoblasts/drug effects , Myoblasts/immunology , Myoblasts/metabolism , Myositis/genetics , Myositis/metabolism , Pancreatitis, Acute Necrotizing/genetics , Pancreatitis, Acute Necrotizing/immunology , Pancreatitis, Acute Necrotizing/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/genetics , Protein Subunits/immunology , Protein Subunits/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/pharmacology , Young Adult
14.
Am J Physiol Cell Physiol ; 308(12): C1023-30, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25904680

ABSTRACT

The function of caveolae, small invaginations of the plasma membrane, remains a matter of debate. We discuss endocytosis and compartmentalization of metabolic and signaling pathways. Caveolin 3 (CAV3) and polymerase I and transcript release factor (PTRF) are important proteins that ensure shaping of caveolae in muscle cells. We investigated caveolae morphologically by electron microscopy in myotubes obtained from patients with CAV3 mutations and performed functional analyses in fibroblasts from a patient with a mutation in PTRF. Despite the complete clinical picture of a caveolinopathy, we found that caveolae in the CAV3-deficient myotubes were normal in shape and number. Furthermore, we found a difference in uptake of cholera toxin B between PTRF-deficient fibroblasts devoid of caveolae and normal fibroblasts. However, after caveolae were rescued by transfection of PTRF, cholera toxin B uptake did not normalize. We conclude that the presence of caveolae as an anatomic structure is not sufficient to ensure their proper function. Alternatively, the functional properties assigned to caveolae might be mediated by different mechanisms that have yet to be resolved.


Subject(s)
Caveolae/metabolism , Fibroblasts/metabolism , Muscle Fibers, Skeletal/metabolism , RNA-Binding Proteins/metabolism , Case-Control Studies , Caveolae/ultrastructure , Caveolin 3/genetics , Caveolin 3/metabolism , Cell Separation/methods , Cells, Cultured , Cholera Toxin/metabolism , Endocytosis , Fibroblasts/ultrastructure , Flow Cytometry , Gene Expression Regulation , Genotype , Humans , Microscopy, Electron, Transmission , Muscle Fibers, Skeletal/ultrastructure , Mutation , Phenotype , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Transfection
15.
Am J Pathol ; 184(6): 1668-76, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24685690

ABSTRACT

Dysferlin is a membrane associated protein involved in vesicle trafficking and fusion. Defects in dysferlin result in limb-girdle muscular dystrophy type 2B and Miyoshi myopathy in humans and myopathy in A/J(dys-/-) and BLAJ mice, but the pathomechanism of the myopathy is not understood. Oil Red O staining showed many lipid droplets within the psoas and quadriceps muscles of dysferlin-deficient A/J(dys-/-) mice aged 8 and 12 months, and lipid droplets were also conspicuous within human myofibers from patients with dysferlinopathy (but not other myopathies). Electron microscopy of 8-month-old A/J(dys-/-) psoas muscles confirmed lipid droplets within myofibers and showed disturbed architecture of myofibers. In addition, the presence of many adipocytes was confirmed, and a possible role for dysferlin in adipocytes is suggested. Increased expression of mRNA for a gene involved in early lipogenesis, CCAAT/enhancer binding protein-δ, in 3-month-old A/J(dys-/-) quadriceps (before marked histopathology is evident), indicates early induction of lipogenesis/adipogenesis within dysferlin-deficient muscles. Similar results were seen for dysferlin-deficient BLAJ mice. These novel observations of conspicuous intermyofibrillar lipid and progressive adipocyte replacement in dysferlin-deficient muscles present a new focus for investigating the mechanisms that result in the progressive decline of muscle function in dysferlinopathies.


Subject(s)
Distal Myopathies/metabolism , Lipid Metabolism , Membrane Proteins/deficiency , Muscle Proteins/deficiency , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adolescent , Adult , Animals , Distal Myopathies/genetics , Distal Myopathies/pathology , Dysferlin , Female , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Middle Aged , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology
16.
Traffic ; 13(9): 1286-94, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22679923

ABSTRACT

Skeletal muscle is continually subjected to microinjuries that must be repaired to maintain structure and function. Fluorescent dye influx after laser injury of muscle fibers is a commonly used assay to study membrane repair. This approach reveals that initial resealing only takes a few seconds. However, by this method the process of membrane repair can only be studied in part and is therefore poorly understood. We investigated membrane repair by visualizing endogenous and GFP-tagged repair proteins after laser wounding. We demonstrate that membrane repair and remodeling after injury is not a quick event but requires more than 20 min. The endogenous repair protein dysferlin becomes visible at the injury site after 20 seconds but accumulates further for at least 30 min. Annexin A1 and F-actin are also enriched at the wounding area. We identified a new participant in the membrane repair process, the ATPase EHD2. We show, that EHD2, but not EHD1 or mutant EHD2, accumulates at the site of injury in human myotubes and at a peculiar structure that develops during membrane remodeling, the repair dome. In conclusion, we established an approach to visualize membrane repair that allows a new understanding of the spatial and temporal events involved.


Subject(s)
Carrier Proteins/analysis , Muscle Fibers, Skeletal/physiology , Sarcolemma/physiology , Actins/analysis , Annexin A1/analysis , Carrier Proteins/genetics , Caveolin 3/analysis , Dysferlin , Humans , Immunohistochemistry , Lasers , Membrane Proteins/analysis , Microscopy, Atomic Force , Muscle Fibers, Skeletal/chemistry , Muscle Proteins/analysis , Mutation , Sarcolemma/chemistry , Sarcolemma/ultrastructure , Vesicular Transport Proteins/analysis
17.
Muscle Nerve ; 50(3): 431-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24415656

ABSTRACT

INTRODUCTION: Muscle weakness in critically ill patients after discharge varies. It is not known whether the electrophysiological distinction between critical illness myopathy (CIM) and critical illness polyneuropathy (CIP) during the early part of a patient's stay in the intensive care unit (ICU) predicts long-term prognosis. METHODS: This was a prospective cohort study of mechanically ventilated ICU patients undergoing conventional nerve conduction studies and direct muscle stimulation in addition to neurological examination during their ICU stay and 1 year after ICU discharge. RESULTS: Twenty-six patients (7 ICU controls, 8 CIM patients, and 11 CIM/CIP patients) were evaluated 1 year after discharge from the ICU. Eighty-eight percent (n = 7) of CIM patients recovered within 1 year compared with 55% (n = 6) of CIM/CIP patients. Thirty-six percent (n = 4) of CIM/CIP patients still needed assistance during their daily routine (P = 0.005). CONCLUSIONS: Early electrophysiological testing predicts long-term outcome in ICU survivors. CIM has a significantly better prognosis than CIM/CIP.


Subject(s)
Critical Illness/therapy , Muscular Diseases/therapy , Polyneuropathies/therapy , Action Potentials/physiology , Adolescent , Adult , Aged , Electrodiagnosis , Electrophysiology , Female , Follow-Up Studies , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Multiple Organ Failure/physiopathology , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiopathology , Neural Conduction , Neurologic Examination , Recovery of Function , Sepsis/complications , Treatment Outcome , Young Adult
18.
Am J Respir Crit Care Med ; 187(4): 387-96, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23239154

ABSTRACT

RATIONALE: Critical illness myopathy (CIM) has no known cause and no treatment. Immobilization and impaired glucose metabolism are implicated. OBJECTIVES: We assessed signal transduction in skeletal muscle of patients at risk for CIM. We also investigated the effects of evoked muscle contraction. METHODS: In a prospective observational and interventional pilot study, we screened 874 mechanically ventilated patients with a sepsis-related organ-failure assessment score greater than or equal to 8 for 3 consecutive days in the first 5 days of intensive care unit stay. Thirty patients at risk for CIM underwent euglycemic-hyperinsulinemic clamp, muscle microdialysis studies, and muscle biopsies. Control subjects were healthy. In five additional patients at risk for CIM, we performed corresponding analyses after 12-day, daily, unilateral electrical muscle stimulation with the contralateral leg as control. MEASUREMENTS AND MAIN RESULTS: We performed successive muscle biopsies and assessed systemic insulin sensitivity and signal transduction pathways of glucose utilization at the mRNA and protein level and glucose transporter-4 (GLUT4) localization in skeletal muscle tissue. Skeletal muscle GLUT4 was trapped at perinuclear spaces, most pronounced in patients with CIM, but resided at the sarcolemma in control subjects. Glucose metabolism was not stimulated during euglycemic-hyperinsulinergic clamp. Insulin signal transduction was competent up to p-Akt activation; however, p-adenosine monophosphate-activated protein kinase (p-AMPK) was not detectable in CIM muscle. Electrical muscle stimulation increased p-AMPK, repositioned GLUT4, locally improved glucose metabolism, and prevented type-2 fiber atrophy. CONCLUSIONS: Insufficient GLUT4 translocation results in decreased glucose supply in patients with CIM. Failed AMPK activation is involved. Evoked muscle contraction may prevent muscle-specific AMPK failure, restore GLUT4 disposition, and diminish protein breakdown. Clinical trial registered with http://www.controlled-trials.com (registration number ISRCTN77569430).


Subject(s)
Glucose Transporter Type 4/metabolism , Insulin/metabolism , Insulin/pharmacology , Muscle Contraction , Muscular Diseases/physiopathology , Adult , Aged , Analysis of Variance , Biopsy/methods , Critical Illness , Electric Stimulation/methods , Female , Glucose Clamp Technique/methods , Glucose Transporter Type 4/genetics , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Male , Microdialysis/methods , Middle Aged , Muscular Diseases/complications , Muscular Diseases/genetics , Muscular Diseases/pathology , Organ Dysfunction Scores , Pilot Projects , Prospective Studies , Respiration, Artificial , Sepsis/complications , Signal Transduction
19.
Microsc Microanal ; 20(2): 514-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24524258

ABSTRACT

Combining the biological specificity of fluorescence microscopy with topographical features revealed by atomic force microscopy (AFM) provides new insights into cell biology. However, the lack of systematic alignment capabilities especially in scanning-tip AFM has limited the combined application approach as AFM drift leads to increasing image mismatch over time. We present an alignment correction method using the cantilever tip as a reference landmark. Since the precise tip position is known in both the fluorescence and AFM images, exact re-alignment becomes possible. We used beads to demonstrate the validity of the method in a complex artificial sample. We then extended this method to biological samples to depict membrane structures in fixed and living human fibroblasts. We were able to map nanoscale membrane structures, such as clathrin-coated pits, to their respective fluorescent spots. Reliable alignment between fluorescence signals and topographic structures opens possibilities to assess key biological processes at the cell surface such as endocytosis and exocytosis.


Subject(s)
Cell Membrane/ultrastructure , Fibroblasts/ultrastructure , Image Processing, Computer-Assisted/methods , Microscopy, Atomic Force/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Cell Membrane/chemistry , Fibroblasts/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL