Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(11): e2115285119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35238677

ABSTRACT

SignificanceMetagenomic pathogen sequencing offers an unbiased approach to characterizing febrile illness. In resource-scarce settings with high biodiversity, it is critical to identify disease-causing pathogens in order to understand burden and to prioritize efforts for control. Here, metagenomic next-generation sequencing (mNGS) characterization of the pathogen landscape in Cambodia revealed diverse vector-borne and zoonotic pathogens irrespective of age and gender as risk factors. Identification of key pathogens led to changes in national program surveillance. This study is a "real world" example of the use of mNGS surveillance of febrile individuals, executed in-country, to identify outbreaks of vector-borne, zoonotic, and other emerging pathogens in a resource-scarce setting.


Subject(s)
Disease Susceptibility , Health Resources , Metagenome , Metagenomics/methods , Public Health Surveillance , Asia, Southeastern/epidemiology , Cambodia/epidemiology , Female , Fever/epidemiology , Fever/etiology , High-Throughput Nucleotide Sequencing , Humans , Male , Seroepidemiologic Studies
2.
J Infect Dis ; 226(8): 1327-1337, 2022 10 17.
Article in English | MEDLINE | ID: mdl-34718636

ABSTRACT

BACKGROUND: We established the first prospective cohort to understand how infection with dengue virus is influenced by vector-specific determinants such as humoral immunity to Aedes aegypti salivary proteins. METHODS: Children aged 2-9 years were enrolled in the PAGODAS (Pediatric Assessment Group of Dengue and Aedes Saliva) cohort with informed consent by their guardians. Children were followed semi-annually for antibodies to dengue and to proteins in Ae. aegypti salivary gland homogenate using enzyme-linked immunosorbent assays and dengue-specific neutralization titers. Children presented with fever at any time for dengue testing. RESULTS: From 13 July to 30 August 2018, we enrolled 771 children. At baseline, 22% (173/770) had evidence of neutralizing antibodies to 1 or more dengue serotypes. By April 2020, 51 children had symptomatic dengue while 148 dengue-naive children had inapparent dengue defined by neutralization assays. In a multivariate model, individuals with higher antibodies to Ae. aegypti salivary proteins were 1.5 times more likely to have dengue infection (hazard ratio [HR], 1.47 [95% confidence interval {CI}, 1.05-2.06]; P = .02), particularly individuals with inapparent dengue (HR, 1.64 [95% CI, 1.12-2.41]; P = .01). CONCLUSIONS: High levels of seropositivity to Ae. aegypti salivary proteins are associated with future development of dengue infection, primarily inapparent, in dengue-naive Cambodian children. CLINICAL TRIALS REGISTRATION: NCT03534245.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , Antibodies, Neutralizing , Cambodia/epidemiology , Child , Humans , Mosquito Vectors , Prospective Studies , Salivary Proteins and Peptides
3.
Emerg Infect Dis ; 28(2): 440-444, 2022 02.
Article in English | MEDLINE | ID: mdl-35076009

ABSTRACT

Inhabitants of the Greater Mekong Subregion in Cambodia are exposed to pathogens that might influence serologic cross-reactivity with severe acute respiratory syndrome coronavirus 2. A prepandemic serosurvey of 528 malaria-infected persons demonstrated higher-than-expected positivity of nonneutralizing IgG to spike and receptor-binding domain antigens. These findings could affect interpretation of large-scale serosurveys.


Subject(s)
COVID-19 , Malaria , Antibodies, Viral , Cambodia/epidemiology , Humans , Malaria/epidemiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Lancet ; 395(10233): 1345-1360, 2020 04 25.
Article in English | MEDLINE | ID: mdl-32171078

ABSTRACT

BACKGROUND: Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. METHODS: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. FINDINGS: Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [24%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin-piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin-piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin-piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate-mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI -6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether-lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether-lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI -1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin-piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin-piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether-lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether-lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether-lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin-piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin-piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin-piperaquine plus mefloquine; p=0·50). INTERPRETATION: Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance. FUNDING: UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Adolescent , Adult , Amodiaquine/administration & dosage , Amodiaquine/therapeutic use , Anthraquinones/administration & dosage , Anthraquinones/therapeutic use , Antimalarials/administration & dosage , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/administration & dosage , Drug Resistance , Drug Therapy, Combination , Female , Humans , Male , Mefloquine/administration & dosage , Mefloquine/therapeutic use , Plasmodium falciparum/drug effects , Polymerase Chain Reaction , Quinolines/administration & dosage , Quinolines/therapeutic use , Treatment Outcome , Young Adult
5.
J Immunol ; 202(9): 2648-2660, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30944159

ABSTRACT

Plasmodium vivax invasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the P. vivax Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some P. vivax-exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit P. vivax reticulocyte invasion, and Ab levels correlate with protection against P. vivax malaria. To better understand the functional characteristics and fine specificity of protective human Abs to DBPII, we sorted single DBPII-specific IgG+ memory B cells from three individuals with high blocking activity to DBPII. We identified 12 DBPII-specific human mAbs from distinct lineages that blocked DBPII-DARC binding. All mAbs were P. vivax strain transcending and targeted known binding motifs of DBPII with DARC. Eleven mAbs competed with each other for binding, indicating recognition of the same or overlapping epitopes. Naturally acquired blocking Abs to DBPII from individuals with high levels residing in different P. vivax-endemic areas worldwide competed with mAbs, suggesting broadly shared recognition sites. We also found that mAbs inhibited P. vivax entry into reticulocytes in vitro. These findings suggest that IgG+ memory B cell activity in individuals with P. vivax strain-transcending Abs to DBPII display a limited clonal response with inhibitory blocking directed against a distinct region of the molecule.


Subject(s)
Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , B-Lymphocytes/immunology , Immunologic Memory , Malaria, Vivax/immunology , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , B-Lymphocytes/pathology , Female , Humans , Malaria, Vivax/pathology , Malaria, Vivax/prevention & control , Male , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology
6.
Malar J ; 19(1): 181, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32404110

ABSTRACT

BACKGROUND: Long regarded as an epicenter of drug-resistant malaria, Southeast Asia continues to provide new challenges to the control of Plasmodium falciparum malaria. Recently, resistance to the artemisinin combination therapy partner drug piperaquine has been observed in multiple locations across Southeast Asia. Genetic studies have identified single nucleotide polymorphisms as well as copy number variations in the plasmepsin 2 and plasmepsin 3 genes, which encode haemoglobin-degrading proteases that associate with clinical and in vitro piperaquine resistance. RESULTS: To accurately and quickly determine the presence of copy number variations in the plasmepsin 2/3 genes in field isolates, this study developed a quantitative PCR assay using TaqMan probes. Copy number estimates were validated using a separate SYBR green-based quantitative PCR assay as well as a novel PCR-based breakpoint assay to detect the hybrid gene product. Field samples from 2012 to 2015 across three sites in Cambodia were tested using DNA extracted from dried blood spots and whole blood to monitor the extent of plasmepsin 2/3 gene amplifications, as well as amplifications in the multidrug resistance transporter 1 gene (pfmdr1), a marker of mefloquine resistance. This study found high concordance across all methods of copy number detection. For samples derived from dried blood spots, a success rate greater than 80% was found in each assay, with more recent samples performing better. Evidence of extensive plasmepsin 2/3 copy number amplifications was observed in Pursat (94%, 2015) (Western Cambodia) and Preah Vihear (87%, 2014) (Northern Cambodia), and lower levels in Ratanakiri (16%, 2014) (Eastern Cambodia). A shift was observed from two copies of plasmepsin 2 in Pursat in 2013 to three copies in 2014-2015 (25% to 64%). Pfmdr1 amplifications were absent in all samples from Preah Vihear and Ratanakiri in 2014 and absent in Pursat in 2015. CONCLUSIONS: The multiplex TaqMan assay is a robust tool for monitoring both plasmepsin 2/3 and pfmdr1 copy number variations in field isolates, and the SYBR-green and breakpoint assays are useful for monitoring plasmepsin 2/3 amplifications. This study shows increasing levels of plasmepsin 2 copy numbers across Cambodia from 2012 to 2015 and a complete reversion of multicopy pfmdr1 parasites to single copy parasites in all study locations.


Subject(s)
Antimalarials/pharmacology , Aspartic Acid Endopeptidases/genetics , DNA Copy Number Variations/genetics , Drug Resistance/genetics , Genetic Techniques/instrumentation , Plasmodium falciparum/genetics , Quinolines/pharmacology
7.
Nature ; 505(7481): 50-5, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24352242

ABSTRACT

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Alleles , Animals , Blood Cells/parasitology , Cambodia , Drug Resistance/drug effects , Genetic Markers/genetics , Half-Life , Humans , Malaria, Falciparum/drug therapy , Mutation/genetics , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide/genetics , Protein Structure, Tertiary/genetics , Protozoan Proteins/chemistry , Time Factors
8.
N Engl J Med ; 371(5): 411-23, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25075834

ABSTRACT

BACKGROUND: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS: The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS: Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.).


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Africa South of the Sahara , Antimalarials/pharmacology , Artemisinins/pharmacology , Asia, Southeastern , Child , Child, Preschool , Humans , Infant , Middle Aged , Multivariate Analysis , Parasite Load , Parasitemia/drug therapy , Parasitemia/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Point Mutation , Young Adult
9.
Antimicrob Agents Chemother ; 59(5): 2934-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25712365

ABSTRACT

Dihydroartemisinin-piperaquine is the current frontline artemisinin combination therapy (ACT) for Plasmodium falciparum malaria in Cambodia but is now failing in several western provinces. To investigate artesunate plus mefloquine (AS+MQ) as a replacement ACT, we measured the prevalence of multiple pfmdr1 copies--a molecular marker for MQ resistance--in 844 P. falciparum clinical isolates collected in 2008 to 2013. The pfmdr1 copy number is decreasing in Western Cambodia, suggesting that P. falciparum is regaining in vitro susceptibility to MQ.


Subject(s)
Antimalarials/pharmacology , Mefloquine/pharmacology , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Parasitic Sensitivity Tests
10.
Antimicrob Agents Chemother ; 58(10): 6270-2, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25049249

ABSTRACT

Chloroquine (CQ) is used to treat Plasmodium vivax malaria in areas where CQ resistance has not been reported. The use of artemisinin (ART)-based combination therapies (ACTs) to treat CQ-sensitive P. vivax infections is effective and convenient but may promote the emergence and worsening of ART resistance in sympatric Plasmodium falciparum populations. Here, we show that CQ effectively treats P. vivax malaria in Pursat Province, western Cambodia, where ART-resistant P. falciparum is highly prevalent and spreading. (This study has been registered at ClinicalTrials.gov under registration no. NCT00663546.).


Subject(s)
Chloroquine/pharmacology , Plasmodium vivax/drug effects , Anti-Infective Agents/pharmacology , Artemisinins/pharmacology , Cambodia , Drug Resistance , Malaria
11.
Antimicrob Agents Chemother ; 57(11): 5277-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23939897

ABSTRACT

In 2008, dihydroartemisinin (DHA)-piperaquine (PPQ) became the first-line treatment for uncomplicated Plasmodium falciparum malaria in western Cambodia. Recent reports of increased treatment failure rates after DHA-PPQ therapy in this region suggest that parasite resistance to DHA, PPQ, or both is now adversely affecting treatment. While artemisinin (ART) resistance is established in western Cambodia, there is no evidence of PPQ resistance. To monitor for resistance to PPQ and other antimalarials, we measured drug susceptibilities for parasites collected in 2011 and 2012 from Pursat, Preah Vihear, and Ratanakiri, in western, northern, and eastern Cambodia, respectively. Using a SYBR green I fluorescence assay, we calculated the ex vivo 50% inhibitory concentrations (IC50s) of 310 parasites to six antimalarials: chloroquine (CQ), mefloquine (MQ), quinine (QN), PPQ, artesunate (ATS), and DHA. Geometric mean IC50s (GMIC50s) for all drugs (except PPQ) were significantly higher in Pursat and Preah Vihear than in Ratanakiri (P ≤ 0.001). An increased copy number of P. falciparum mdr1 (pfmdr1), an MQ resistance marker, was more prevalent in Pursat and Preah Vihear than in Ratanakiri and was associated with higher GMIC50s for MQ, QN, ATS, and DHA. An increased copy number of a chromosome 5 region (X5r), a candidate PPQ resistance marker, was detected in Pursat but was not associated with reduced susceptibility to PPQ. The ex vivo IC50 and pfmdr1 copy number are important tools in the surveillance of multidrug-resistant (MDR) parasites in Cambodia. While MDR P. falciparum is prevalent in western and northern Cambodia, there is no evidence for PPQ resistance, suggesting that DHA-PPQ treatment failures result mainly from ART resistance.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance, Multiple/genetics , Malaria, Falciparum/drug therapy , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Quinolines/therapeutic use , Benzothiazoles , Biomarkers/metabolism , Cambodia/epidemiology , DNA Copy Number Variations , Diamines , Drug Combinations , Epidemiological Monitoring , Gene Expression , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Microscopy, Fluorescence , Multidrug Resistance-Associated Proteins/metabolism , Organic Chemicals , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism
12.
Nat Commun ; 13(1): 7036, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396947

ABSTRACT

Mosquito-borne viruses are a growing global threat. Initial viral inoculation occurs in the skin via the mosquito 'bite', eliciting immune responses that shape the establishment of infection and pathogenesis. Here we assess the cutaneous innate and adaptive immune responses to controlled Aedes aegypti feedings in humans living in Aedes-endemic areas. In this single-arm, cross-sectional interventional study (trial registration #NCT04350905), we enroll 30 healthy adult participants aged 18 to 45 years of age from Cambodia between October 2020 and January 2021. We perform 3-mm skin biopsies at baseline as well as 30 min, 4 h, and 48 h after a controlled feeding by uninfected Aedes aegypti mosquitos. The primary endpoints are measurement of changes in early and late innate responses in bitten vs unbitten skin by gene expression profiling, immunophenotyping, and cytokine profiling. The results reveal induction of neutrophil degranulation and recruitment of skin-resident dendritic cells and M2 macrophages. As the immune reaction progresses T cell priming and regulatory pathways are upregulated along with a shift to Th2-driven responses and CD8+ T cell activation. Stimulation of participants' bitten skin cells with Aedes aegypti salivary gland extract results in reduced pro-inflammatory cytokine production. These results identify key immune genes, cell types, and pathways in the human response to mosquito bites and can be leveraged to inform and develop novel therapeutics and vector-targeted vaccine candidates to interfere with vector-mediated disease.


Subject(s)
Aedes , Insect Bites and Stings , Adolescent , Adult , Animals , Humans , Middle Aged , Young Adult , Cross-Sectional Studies , Cytokines , Immunity , Mosquito Vectors
13.
medRxiv ; 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34611671

ABSTRACT

Greater Mekong inhabitants are exposed to pathogens, zoonotic and otherwise, that may influence SARS-CoV-2 seroreactivity. A pre-pandemic (2005 to 2011) serosurvey of from 528 malaria-experienced Cambodians demonstrated higher-than-expected (up to 13.8 %) positivity of non-neutralizing IgG to SARS-CoV-2 spike and RBD antigens. These findings have implications for interpreting large-scale serosurveys. ARTICLE SUMMARY LINE: In the pre-COVID19 pandemic years of 2005 to 2011, malaria experienced Cambodians from rural settings had higher-than-expected seroreactivity to SARS-CoV-2 spike and receptor binding domain proteins.

14.
Front Immunol ; 10: 2295, 2019.
Article in English | MEDLINE | ID: mdl-31636633

ABSTRACT

Plasmodium vivax malaria incidence has increased in Latin America and Asia and is responsible for nearly 74.1% of malaria cases in Latin America. Immune responses to P. vivax are less well characterized than those to P. falciparum, partly because P. vivax is more difficult to cultivate in the laboratory. While antibodies are known to play an important role in P. vivax disease control, few studies have evaluated responses to P. vivax sexual stage antigens. We collected sera or plasma samples from P. vivax-infected subjects from Brazil (n = 70) and Cambodia (n = 79) to assess antibody responses to domain 1 of the gametocyte/gamete stage protein Pvs230 (Pvs230D1M). We found that 27.1% (19/70) and 26.6% (21/79) of subjects from Brazil and Cambodia, respectively, presented with detectable antibody responses to Pvs230D1M antigen. The most frequent subclasses elicited in response to Pvs230D1M were IgG1 and IgG3. Although age did not correlate significantly with Pvs230D1M antibody levels overall, we observed significant differences between age strata. Hemoglobin concentration inversely correlated with Pvs230D1M antibody levels in Brazil, but not in Cambodia. Additionally, we analyzed the antibody response against Pfs230D1M, the P. falciparum ortholog of Pvs230D1M. We detected antibodies to Pfs230D1M in 7.2 and 16.5% of Brazilian and Cambodian P. vivax-infected subjects. Depletion of Pvs230D1M IgG did not impair the response to Pfs230D1M, suggesting pre-exposure to P. falciparum, or co-infection. We also analyzed IgG responses to sporozoite protein PvCSP (11.4 and 41.8% in Brazil and Cambodia, respectively) and to merozoite protein PvDBP-RII (67.1 and 48.1% in Brazil and Cambodia, respectively), whose titers also inversely correlated with hemoglobin concentration only in Brazil. These data establish patterns of seroreactivity to sexual stage Pvs230D1M and show similar antibody responses among P. vivax-infected subjects from regions of differing transmission intensity in Brazil and Cambodia.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium vivax/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Female , Hemoglobins/analysis , Humans , Immunoglobulin G/blood , Malaria, Vivax/prevention & control , Male , Middle Aged , Plasmodium falciparum/immunology
15.
Lancet Infect Dis ; 19(9): 952-961, 2019 09.
Article in English | MEDLINE | ID: mdl-31345710

ABSTRACT

BACKGROUND: The emergence and spread of resistance in Plasmodium falciparum malaria to artemisinin combination therapies in the Greater Mekong subregion poses a major threat to malaria control and elimination. The current study is part of a multi-country, open-label, randomised clinical trial (TRACII, 2015-18) evaluating the efficacy, safety, and tolerability of triple artemisinin combination therapies. A very high rate of treatment failure after treatment with dihydroartemisinin-piperaquine was observed in Thailand, Cambodia, and Vietnam. The immediate public health importance of our findings prompted us to report the efficacy data on dihydroartemisinin-piperaquine and its determinants ahead of the results of the overall trial, which will be published later this year. METHODS: Patients aged between 2 and 65 years presenting with uncomplicated P falciparum or mixed species malaria at seven sites in Thailand, Cambodia, and Vietnam were randomly assigned to receive dihydroartemisinin-piperaquine with or without mefloquine, as part of the TRACII trial. The primary outcome was the PCR-corrected efficacy at day 42. Next-generation sequencing was used to assess the prevalence of molecular markers associated with artemisinin resistance (kelch13 mutations, in particular Cys580Tyr) and piperaquine resistance (plasmepsin-2 and plasmepsin-3 amplifications and crt mutations). This study is registered with ClinicalTrials.gov, number NCT02453308. FINDINGS: Between Sept 28, 2015, and Jan 18, 2018, 539 patients with acute P falciparum malaria were screened for eligibility, 292 were enrolled, and 140 received dihydroartemisinin-piperaquine. The overall Kaplan-Meier estimate of PCR-corrected efficacy of dihydroartemisinin-piperaquine at day 42 was 50·0% (95% CI 41·1-58·3). PCR-corrected efficacies for individual sites were 12·7% (2·2-33·0) in northeastern Thailand, 38·2% (15·9-60·5) in western Cambodia, 73·4% (57·0-84·3) in Ratanakiri (northeastern Cambodia), and 47·1% (33·5-59·6) in Binh Phuoc (southwestern Vietnam). Treatment failure was associated independently with plasmepsin2/3 amplification status and four mutations in the crt gene (Thr93Ser, His97Tyr, Phe145Ile, and Ile218Phe). Compared with the results of our previous TRACI trial in 2011-13, the prevalence of molecular markers of artemisinin resistance (kelch13 Cys580Tyr mutations) and piperaquine resistance (plasmepsin2/3 amplifications and crt mutations) has increased substantially in the Greater Mekong subregion in the past decade. INTERPRETATION: Dihydroartemisinin-piperaquine is not treating malaria effectively across the eastern Greater Mekong subregion. A highly drug-resistant P falciparum co-lineage is evolving, acquiring new resistance mechanisms, and spreading. Accelerated elimination of P falciparum malaria in this region is needed urgently, to prevent further spread and avoid a potential global health emergency. FUNDING: UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and National Institutes of Health.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance, Multiple/genetics , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Quinolines/therapeutic use , Adolescent , Adult , Cambodia , Drug Therapy, Combination , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Mefloquine/therapeutic use , Membrane Transport Proteins/genetics , Middle Aged , Mutation , Plasmodium falciparum/drug effects , Prospective Studies , Protozoan Proteins/genetics , Thailand , Treatment Failure , Vietnam , Young Adult
16.
Lancet Infect Dis ; 18(3): 337-345, 2018 03.
Article in English | MEDLINE | ID: mdl-29398391

ABSTRACT

BACKGROUND: Antimalarial resistance is rapidly spreading across parts of southeast Asia where dihydroartemisinin-piperaquine is used as first-line treatment for Plasmodium falciparum malaria. The first published reports about resistance to antimalarial drugs came from western Cambodia in 2013. Here, we analyse genetic changes in the P falciparum population of western Cambodia in the 6 years before those reports. METHODS: We analysed genome sequence data on 1492 P falciparum samples from 11 locations across southeast Asia, including 464 samples collected in western Cambodia between 2007 and 2013. Different epidemiological origins of resistance were identified by haplotypic analysis of the kelch13 artemisinin resistance locus and the plasmepsin 2-3 piperaquine resistance locus. FINDINGS: We identified more than 30 independent origins of artemisinin resistance, of which the KEL1 lineage accounted for 140 (91%) of 154 parasites resistant to dihydroartemisinin-piperaquine. In 2008, KEL1 combined with PLA1, the major lineage associated with piperaquine resistance. By 2013, the KEL1/PLA1 co-lineage had reached a frequency of 63% (24/38) in western Cambodia and had spread to northern Cambodia. INTERPRETATION: The KEL1/PLA1 co-lineage emerged in the same year that dihydroartemisinin-piperaquine became the first-line antimalarial drug in western Cambodia and spread rapidly thereafter, displacing other artemisinin-resistant parasite lineages. These findings have important implications for management of the global health risk associated with the current outbreak of multidrug-resistant malaria in southeast Asia. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, UK Department for International Development, and the Intramural Research Program of the National Institute of Allergy and Infectious Diseases.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Asia, Southeastern/epidemiology , Disease Outbreaks/statistics & numerical data , Gene Expression Regulation , Genome, Protozoan , Genotype , Humans , Malaria, Falciparum/drug therapy
17.
Parasit Vectors ; 11(1): 664, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30572920

ABSTRACT

BACKGROUND: Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered. METHODS/DESIGN: We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR. DISCUSSION: This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia. TRIAL REGISTRATION: NCT03534245 registered on 23 May 2018.


Subject(s)
Aedes , Arbovirus Infections , Dengue Virus , Dengue , Mosquito Vectors , Animals , Child , Child, Preschool , Female , Humans , Male , Aedes/immunology , Aedes/physiology , Aedes/virology , Antibodies, Viral/blood , Arbovirus Infections/blood , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arbovirus Infections/virology , Cambodia/epidemiology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Dengue/blood , Dengue/epidemiology , Dengue/transmission , Dengue/virology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Follow-Up Studies , Longitudinal Studies , Mosquito Vectors/immunology , Mosquito Vectors/physiology , Mosquito Vectors/virology , Pediatrics/statistics & numerical data , Prospective Studies , Saliva/immunology , Saliva/virology , Seasons , Seroepidemiologic Studies , Zika Virus/genetics , Zika Virus/isolation & purification
18.
Lancet Infect Dis ; 17(2): 164-173, 2017 02.
Article in English | MEDLINE | ID: mdl-27818095

ABSTRACT

BACKGROUND: As the prevalence of artemisinin-resistant Plasmodium falciparum malaria increases in the Greater Mekong subregion, emerging resistance to partner drugs in artemisinin combination therapies seriously threatens global efforts to treat and eliminate this disease. Molecular markers that predict failure of artemisinin combination therapy are urgently needed to monitor the spread of partner drug resistance, and to recommend alternative treatments in southeast Asia and beyond. METHODS: We did a genome-wide association study of 297 P falciparum isolates from Cambodia to investigate the relationship of 11 630 exonic single-nucleotide polymorphisms (SNPs) and 43 copy number variations (CNVs) with in-vitro piperaquine 50% inhibitory concentrations (IC50s), and tested whether these genetic variants are markers of treatment failure with dihydroartemisinin-piperaquine. We then did a survival analysis of 133 patients to determine whether candidate molecular markers predicted parasite recrudescence following dihydroartemisinin-piperaquine treatment. FINDINGS: Piperaquine IC50s increased significantly from 2011 to 2013 in three Cambodian provinces (2011 vs 2013 median IC50s: 20·0 nmol/L [IQR 13·7-29·0] vs 39·2 nmol/L [32·8-48·1] for Ratanakiri, 19·3 nmol/L [15·1-26·2] vs 66·2 nmol/L [49·9-83·0] for Preah Vihear, and 19·6 nmol/L [11·9-33·9] vs 81·1 nmol/L [61·3-113·1] for Pursat; all p≤10-3; Kruskal-Wallis test). Genome-wide analysis of SNPs identified a chromosome 13 region that associates with raised piperaquine IC50s. A non-synonymous SNP (encoding a Glu415Gly substitution) in this region, within a gene encoding an exonuclease, associates with parasite recrudescence following dihydroartemisinin-piperaquine treatment. Genome-wide analysis of CNVs revealed that a single copy of the mdr1 gene on chromosome 5 and a novel amplification of the plasmepsin 2 and plasmepsin 3 genes on chromosome 14 also associate with raised piperaquine IC50s. After adjusting for covariates, both exo-E415G and plasmepsin 2-3 markers significantly associate (p=3·0 × 10-8 and p=1·7 × 10-7, respectively) with decreased treatment efficacy (survival rates 0·38 [95% CI 0·25-0·51] and 0·41 [0·28-0·53], respectively). INTERPRETATION: The exo-E415G SNP and plasmepsin 2-3 amplification are markers of piperaquine resistance and dihydroartemisinin-piperaquine failures in Cambodia, and can help monitor the spread of these phenotypes into other countries of the Greater Mekong subregion, and elucidate the mechanism of piperaquine resistance. Since plasmepsins are involved in the parasite's haemoglobin-to-haemozoin conversion pathway, targeted by related antimalarials, plasmepsin 2-3 amplification probably mediates piperaquine resistance. FUNDING: Intramural Research Program of the US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and UK Department for International Development.


Subject(s)
Artemisinins/therapeutic use , Drug Resistance , Genetic Association Studies , Genetic Markers , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Quinolines/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cambodia/epidemiology , Drug Therapy, Combination , Genome-Wide Association Study , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Treatment Failure
19.
PLoS Negl Trop Dis ; 10(10): e0005091, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27798646

ABSTRACT

BACKGROUND: Plasmodium vivax causes the majority of malaria episodes outside Africa, but remains a relatively understudied pathogen. The pathology of P. vivax infection depends critically on the parasite's ability to recognize and invade human erythrocytes. This invasion process involves an interaction between P. vivax Duffy Binding Protein (PvDBP) in merozoites and the Duffy antigen receptor for chemokines (DARC) on the erythrocyte surface. Whole-genome sequencing of clinical isolates recently established that some P. vivax genomes contain two copies of the PvDBP gene. The frequency of this duplication is particularly high in Madagascar, where there is also evidence for P. vivax infection in DARC-negative individuals. The functional significance and global prevalence of this duplication, and whether there are other copy number variations at the PvDBP locus, is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using whole-genome sequencing and PCR to study the PvDBP locus in P. vivax clinical isolates, we found that PvDBP duplication is widespread in Cambodia. The boundaries of the Cambodian PvDBP duplication differ from those previously identified in Madagascar, meaning that current molecular assays were unable to detect it. The Cambodian PvDBP duplication did not associate with parasite density or DARC genotype, and ranged in prevalence from 20% to 38% over four annual transmission seasons in Cambodia. This duplication was also present in P. vivax isolates from Brazil and Ethiopia, but not India. CONCLUSIONS/SIGNIFICANCE: PvDBP duplications are much more widespread and complex than previously thought, and at least two distinct duplications are circulating globally. The same duplication boundaries were identified in parasites from three continents, and were found at high prevalence in human populations where DARC-negativity is essentially absent. It is therefore unlikely that PvDBP duplication is associated with infection of DARC-negative individuals, but functional tests will be required to confirm this hypothesis.


Subject(s)
Antigens, Protozoan/genetics , Gene Duplication , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Receptors, Cell Surface/genetics , Adolescent , Antigens, Protozoan/metabolism , Brazil , Cambodia , Carrier Proteins , Child , Duffy Blood-Group System/metabolism , Erythrocytes/metabolism , Erythrocytes/parasitology , Ethiopia , Female , Humans , India , Madagascar , Malaria, Vivax/metabolism , Male , Phylogeny , Plasmodium vivax/classification , Plasmodium vivax/isolation & purification , Plasmodium vivax/metabolism , Protozoan Proteins/metabolism , Receptors, Cell Surface/metabolism
20.
Lancet Infect Dis ; 16(3): 357-65, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774243

ABSTRACT

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin-piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. METHODS: In this prospective cohort study, we enrolled patients aged 2-65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin-piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. FINDINGS: Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations, higher piperaquine 50% inhibitory concentration (IC50) values, and lower mefloquine IC50 values; none had multiple pfmdr1 copies, a genetic marker of mefloquine resistance. INTERPRETATION: Dihydroartemisinin-piperaquine failures are caused by both artemisinin and piperaquine resistance, and commonly occur in places where dihydroartemisinin-piperaquine has been used in the private sector. In Cambodia, artesunate plus mefloquine may be a viable option to treat dihydroartemisinin-piperaquine failures, and a more effective first-line ACT in areas where dihydroartemisinin-piperaquine failures are common. The use of single low-dose primaquine to eliminate circulating gametocytes is needed in areas where artemisinin and ACT resistance is prevalent. FUNDING: National Institute of Allergy and Infectious Diseases.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Adolescent , Adult , Aged , Artemisinins/administration & dosage , Cambodia/epidemiology , Child , Child, Preschool , Cohort Studies , Drug Therapy, Combination , Female , Genotype , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Male , Middle Aged , Prospective Studies , Quinolines/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL