Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815585

ABSTRACT

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.

2.
Hum Mol Genet ; 32(1): 93-103, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35925862

ABSTRACT

Pathogenic variants in ATL1 are a known cause of autosomal-dominantly inherited hereditary spastic paraplegia (HSP-ATL1, SPG3A) with a predominantly 'pure' HSP phenotype. Although a relatively large number of patients have been reported, no genotype-phenotype correlations have been established for specific ATL1 variants. Confronted with five children carrying de novo ATL1 variants showing early, complex and severe symptoms, we systematically investigated the molecular and phenotypic spectrum of HSP-ATL1. Through a cross-sectional analysis of 537 published and novel cases, we delineate a distinct phenotype observed in patients with de novo variants. Guided by this systematic phenotyping approach and structural modelling of disease-associated variants in atlastin-1, we demonstrate that this distinct phenotypic signature is also prevalent in a subgroup of patients with inherited ATL1 variants and is largely explained by variant localization within a three-dimensional mutational cluster. Establishing genotype-phenotype correlations, we find that symptoms that extend well beyond the typical pure HSP phenotype (i.e. neurodevelopmental abnormalities, upper limb spasticity, bulbar symptoms, peripheral neuropathy and brain imaging abnormalities) are prevalent in patients with variants located within this mutational cluster.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Cross-Sectional Studies , DNA Mutational Analysis , GTP-Binding Proteins/genetics , Membrane Proteins/genetics , Mutation , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology
3.
J Med Genet ; 61(6): 578-585, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38290825

ABSTRACT

OBJECTIVES: Speech and language impairments are core features of the neurodevelopmental genetic condition Kleefstra syndrome. Communication has not been systematically examined to guide intervention recommendations. We define the speech, language and cognitive phenotypic spectrum in a large cohort of individuals with Kleefstra syndrome. METHOD: 103 individuals with Kleefstra syndrome (40 males, median age 9.5 years, range 1-43 years) with pathogenic variants (52 9q34.3 deletions, 50 intragenic variants, 1 balanced translocation) were included. Speech, language and non-verbal communication were assessed. Cognitive, health and neurodevelopmental data were obtained. RESULTS: The cognitive spectrum ranged from average intelligence (12/79, 15%) to severe intellectual disability (12/79, 15%). Language ability also ranged from average intelligence (10/90, 11%) to severe intellectual disability (53/90, 59%). Speech disorders occurred in 48/49 (98%) verbal individuals and even occurred alongside average language and cognition. Developmental regression occurred in 11/80 (14%) individuals across motor, language and psychosocial domains. Communication aids, such as sign and speech-generating devices, were crucial for 61/103 (59%) individuals including those who were minimally verbal, had a speech disorder or following regression. CONCLUSIONS: The speech, language and cognitive profile of Kleefstra syndrome is broad, ranging from severe impairment to average ability. Genotype and age do not explain the phenotypic variability. Early access to communication aids may improve communication and quality of life.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 9 , Cognition , Craniofacial Abnormalities , Intellectual Disability , Phenotype , Humans , Male , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Child , Adolescent , Female , Adult , Child, Preschool , Chromosomes, Human, Pair 9/genetics , Young Adult , Infant , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/physiopathology , Speech , Speech Disorders/genetics , Speech Disorders/physiopathology , Language , Intelligence/genetics , Language Disorders/genetics , Language Disorders/physiopathology , Heart Defects, Congenital
4.
Hum Mol Genet ; 31(20): 3393-3404, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35594551

ABSTRACT

PTEN hamartoma tumor syndrome (PHTS) is a complex neurodevelopmental disorder characterized by mechanistic target of rapamycin (mTOR) overactivity. Limited data suggest that mTOR inhibitors may be therapeutic. No placebo-controlled studies have examined mTOR inhibition on cognition and behavior in humans with PHTS with/without autism. We conducted a 6-month phase II, randomized, double-blinded, placebo-controlled trial to examine the safety profile and efficacy of everolimus (4.5 mg/m2) in individuals (5-45 years) with PHTS. We measured several cognitive and behavioral outcomes, and electroencephalography (EEG) biomarkers. The primary endpoint was a neurocognitive composite derived from Stanford Binet-5 (SB-5) nonverbal working memory score, SB-5 verbal working memory, Conners' Continuous Performance Test hit reaction time and Purdue Pegboard Test score. Forty-six participants underwent 1:1 randomization: n = 24 (everolimus) and n = 22 (placebo). Gastrointestinal adverse events were more common in the everolimus group (P < 0.001). Changes in the primary endpoint between groups from baseline to Month 6 were not apparent (Cohen's d = -0.10, P = 0.518). However, several measures were associated with modest effect sizes (≥0.2) in the direction of improvement, including measures of nonverbal IQ, verbal learning, autism symptoms, motor skills, adaptive behavior and global improvement. There was a significant difference in EEG central alpha power (P = 0.049) and central beta power (P = 0.039) 6 months after everolimus treatment. Everolimus is well tolerated in PHTS; adverse events were similar to previous reports. The primary efficacy endpoint did not reveal improvement. Several secondary efficacy endpoints moved in the direction of improvement. EEG measurements indicate target engagement following 6 months of daily oral everolimus. Trial Registration Information: ClinicalTrials.gov NCT02991807 Classification of Evidence: I.


Subject(s)
Autistic Disorder , Hamartoma Syndrome, Multiple , Autistic Disorder/drug therapy , Double-Blind Method , Everolimus/adverse effects , Humans , PTEN Phosphohydrolase , TOR Serine-Threonine Kinases , Treatment Outcome
5.
Hum Mol Genet ; 31(4): 625-637, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34559195

ABSTRACT

Individuals with Phelan-McDermid syndrome (PMS) present with a wide range of developmental, medical, cognitive and behavioral abnormalities. Previous literature has begun to elucidate genotype-phenotype associations that may contribute to the wide spectrum of features. Here, we report results of genotype-phenotype associations in a cohort of 170 individuals with PMS. Genotypes were defined as Class I deletions (including SHANK3 only or SHANK3 with ARSA and/or ACR and RABL2B), Class II deletions (all other deletions) or sequence variants. Phenotype data were derived prospectively from direct evaluation, caregiver interview and questionnaires, and medical history. Analyses revealed individuals with Class I deletions or sequence variants had fewer delayed developmental milestones and higher cognitive ability compared to those with Class II deletions but had more skill regressions. Individuals with Class II deletions were more likely to have a variety of medical features, including renal abnormalities, spine abnormalities, and ataxic gait. Those with Class I deletions or sequence variants were more likely to have psychiatric diagnoses including bipolar disorder, depression, and schizophrenia. Autism spectrum disorder diagnoses did not differ between groups. This study represents the largest and most rigorous genotype-phenotype analysis in PMS to date and provides important information for considering clinical functioning, trajectories and comorbidities as a function of specific genetic alteration.


Subject(s)
Autism Spectrum Disorder , Chromosome Disorders , Autism Spectrum Disorder/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Genetic Association Studies , Humans
6.
Clin Genet ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923504

ABSTRACT

To comprehensively investigate the neurodevelopmental profile and clinical characteristics associated with SETBP1 haploinsufficiency disorder (SETBP1-HD) and SETBP1-related disorders (SETBP1-RD). We reported genetic results on 34 individuals, with behavior and clinical data from 22 with SETBP1-HD and 5 with SETBP1-RD, by assessing results from medical history interviews and standardized adaptive, clinical, and social measures provided from Simons Searchlight. All individuals with SETBP1-HD and SETBP1-RD exhibited neurological impairments including intellectual disability/developmental delay (IDD), attention-deficit/hyperactivity disorder, autism spectrum disorder, and/or seizures, as well as speech and language delays. While restricted interests and repetitive behaviors present challenges, a relative strength was observed in social motivation within both cohorts. Individuals with SETBP1-RD reported a risk for heart issues and compared to SETBP1-HD greater risks for orthopedic and somatic issues with greater difficulty in bowel control. Higher rates for neonatal feeding difficulties and febrile seizures were reported for individuals with SETBP1-HD. Additional prominent characteristics included sleep, vision, and gastrointestinal issues, hypotonia, and high pain tolerance. This characterization of phenotypic overlap (IDD, speech challenges, autistic, and attention deficit traits) and differentiation (somatic and heart issue risks for SETBP1-RD) between the distinct neurodevelopmental disorders SETBP1-HD and SETBP1-RD is critical for medical management and diagnosis.

7.
Brain ; 146(4): 1420-1435, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36718090

ABSTRACT

Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.


Subject(s)
Spastic Paraplegia, Hereditary , Animals , Child , Humans , Spastic Paraplegia, Hereditary/genetics , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Cell Membrane/metabolism , Mammals/metabolism
8.
Childs Nerv Syst ; 40(3): 801-808, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37778001

ABSTRACT

PURPOSE: Few guidelines exist for genetic testing of patients with moyamoya arteriopathy. This study aims to characterize the yield of genetic testing of non-syndromic moyamoya patients given the current pre-test probability. METHODS: All pediatric moyamoya patients who received revascularization surgery at one institution between 2018 and 2022 were retrospectively reviewed. Patients with previously diagnosed moyamoya syndromes or therapeutic cranial radiation were excluded. RESULTS: Of 117 patients with moyamoya, 74 non-syndromic patients (44 females, 59%) were eligible. The median age at surgery was 8.1 years. Neurosurgeons referred 18 (24%) patients for neurogenetic evaluation. Eleven (61%) patients subsequently underwent genetic testing. Eight (73%) patients had available testing results. Five (62.5%) of these patients had developmental delay compared to 16 (22%) of the entire cohort. Six (75%) patients who underwent genetic testing were found to have at least one genetic variant. These results led to diagnosis of a new genetic disorder for 1 (12.5%) patient and screening recommendations for 2 (25%) patients. An RNF213 variant in one patient led to recommendations for family member screening and pulmonary hypertension screening. Another patient was diagnosed with CBL disorder and referred for cancer screening. The median age at surgery in patients with clinically actionable findings was 4.6 years compared to 9.2 years in those who were referred for genetic testing. All 3 patients who had an actionable finding had developmental delay. CONCLUSION: It may be beneficial to refer moyamoya patients under 5 for genetic screening given the high likelihood of discovering actionable mutations.


Subject(s)
Moyamoya Disease , Female , Humans , Child , Child, Preschool , Retrospective Studies , Moyamoya Disease/diagnosis , Moyamoya Disease/genetics , Moyamoya Disease/surgery , Mutation , Genetic Testing , Ubiquitin-Protein Ligases/genetics , Adenosine Triphosphatases/genetics
9.
Pediatr Dermatol ; 41(1): 76-79, 2024.
Article in English | MEDLINE | ID: mdl-37486073

ABSTRACT

Encephalocraniocutaneous lipomatosis (ECCL) is a rare neurocutaneous disorder caused by somatic FGFR1 and KRAS variants. It shares significant phenotypic overlap with several closely related disorders caused by mutations in the RAS-MAPK pathway (mosaic RASopathies). We report a diagnostically challenging case of ECCL in which next-generation sequencing of affected tissue identified a pathologic FGFR1 p.K656E variant, thereby establishing a molecular diagnosis. Patients with FGFR1-associated ECCL carry a risk of developing malignant brain tumors; thus, genetic testing of patients with suspected ECCL has important management implications.


Subject(s)
Eye Diseases , Lipomatosis , Neurocutaneous Syndromes , Humans , Neurocutaneous Syndromes/diagnosis , Neurocutaneous Syndromes/genetics , Neurocutaneous Syndromes/therapy , High-Throughput Nucleotide Sequencing , Lipomatosis/diagnosis , Lipomatosis/genetics , Lipomatosis/therapy
10.
Hum Genet ; 142(7): 909-925, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183190

ABSTRACT

Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Humans , Child , Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Genetic Association Studies , Seizures/genetics , Contactins/genetics
11.
Genet Med ; 25(8): 100856, 2023 08.
Article in English | MEDLINE | ID: mdl-37092537

ABSTRACT

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Subject(s)
Microphthalmos , Receptors, Retinoic Acid , Humans , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoids
12.
Hepatology ; 75(5): 1194-1203, 2022 05.
Article in English | MEDLINE | ID: mdl-34822189

ABSTRACT

BACKGROUND AND AIMS: Data on the use of intravenous L-ornithine L-aspartate (LOLA) in the treatment of overt HE (OHE) is limited. We evaluated the role of intravenous LOLA in patients of cirrhosis with OHE grade III-IV. APPROACH AND RESULTS: In a double-blind randomized placebo-controlled trial, 140 patients were randomized to a combination of LOLA, lactulose, and rifaximin (n = 70) or placebo, lactulose, and rifaximin (n = 70). LOLA was given as continuous intravenous infusion at a dose of 30 g over 24 h for 5 days. Ammonia levels, TNF-α, ILs, and endotoxins were measured on days 0 and 5. The primary outcome was the improvement in the grade of HE at day 5. Higher rates of improvement in grade of HE (92.5% vs. 66%, p < 0.001), lower time to recovery (2.70 ± 0.46 vs. 3.00 ± 0.87 days, p = 0.03), and lower 28-day mortality (16.4% vs. 41.8%, p = 0.001) were seen in the LOLA group as compared with placebo. Levels of inflammatory markers were reduced in both groups. Significantly higher reductions in levels of blood ammonia, IL-6, and TNF-α were seen in the LOLA group. CONCLUSIONS: Combination of LOLA with lactulose and rifaximin was more effective than only lactulose and rifaximin in improving grades of HE, recovery time from encephalopathy, with lower 28-day mortality.


Subject(s)
Hepatic Encephalopathy , Ammonia , Aspartic Acid/therapeutic use , Humans , Lactulose/therapeutic use , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Ornithine , Rifaximin/therapeutic use , Tumor Necrosis Factor-alpha
13.
Clin Genet ; 104(2): 186-197, 2023 08.
Article in English | MEDLINE | ID: mdl-37165752

ABSTRACT

POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype-phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype-phenotype correlations.


Subject(s)
Autistic Disorder , Epilepsy , Intellectual Disability , Humans , Child , Intellectual Disability/genetics , Autistic Disorder/genetics , Phenotype , Epilepsy/genetics , Mutation, Missense/genetics , Developmental Disabilities/genetics , POU Domain Factors/genetics
14.
Am J Med Genet A ; 191(8): 2015-2044, 2023 08.
Article in English | MEDLINE | ID: mdl-37392087

ABSTRACT

Phelan-McDermid syndrome (PMS) is a genetic condition caused by SHANK3 haploinsufficiency and characterized by a wide range of neurodevelopmental and systemic manifestations. The first practice parameters for assessment and monitoring in individuals with PMS were published in 2014; recently, knowledge about PMS has grown significantly based on data from longitudinal phenotyping studies and large-scale genotype-phenotype investigations. The objective of these updated clinical management guidelines was to: (1) reflect the latest in knowledge in PMS and (2) provide guidance for clinicians, researchers, and the general community. A taskforce was established with clinical experts in PMS and representatives from the parent community. Experts joined subgroups based on their areas of specialty, including genetics, neurology, neurodevelopment, gastroenterology, primary care, physiatry, nephrology, endocrinology, cardiology, gynecology, and dentistry. Taskforce members convened regularly between 2021 and 2022 and produced specialty-specific guidelines based on iterative feedback and discussion. Taskforce leaders then established consensus within their respective specialty group and harmonized the guidelines. The knowledge gained over the past decade allows for improved guidelines to assess and monitor individuals with PMS. Since there is limited evidence specific to PMS, intervention mostly follows general guidelines for treating individuals with developmental disorders. Significant evidence has been amassed to guide the management of comorbid neuropsychiatric conditions in PMS, albeit mainly from caregiver report and the experience of clinical experts. These updated consensus guidelines on the management of PMS represent an advance for the field and will improve care in the community. Several areas for future research are also highlighted and will contribute to subsequent updates with more refined and specific recommendations as new knowledge accumulates.


Subject(s)
Chromosome Disorders , Humans , Phenotype , Chromosome Disorders/diagnosis , Chromosome Disorders/epidemiology , Chromosome Disorders/genetics , Chromosome Deletion , Nerve Tissue Proteins/genetics , Chromosomes, Human, Pair 22/genetics
15.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Article in English | MEDLINE | ID: mdl-37183572

ABSTRACT

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Adult , Child , Female , Humans , Infant , Male , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Phenotype , Protein Phosphatase 2C/genetics , Retrospective Studies , Vomiting , Child, Preschool , Adolescent , Young Adult , Middle Aged
16.
Europace ; 26(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38195854

ABSTRACT

AIMS: Kleefstra syndrome (KS), often diagnosed in early childhood, is a rare genetic disorder due to haploinsufficiency of EHMT1 and is characterized by neuromuscular and intellectual developmental abnormalities. Although congenital heart disease (CHD) is common, the prevalence of arrhythmias and CHD subtypes in KS is unknown. METHODS AND RESULTS: Inspired by a novel case series of KS patients with atrial tachyarrhythmias in the USA, we evaluate the two largest known KS registries for arrhythmias and CHD: Radboudumc (50 patients) based on health record review at Radboud University Medical Center in the Netherlands and GenIDA (163 patients) based on worldwide surveys of patient families. Three KS patients (aged 17-25 years) presented with atrial tachyarrhythmias without manifest CHD. In the international KS registries, the median [interquartile range (IQR)] age was considerably younger: GenIDA/Radboudumc at 10/13.5 (12/13) years, respectively. Both registries had a 40% prevalence of cardiovascular abnormalities, the majority being CHD, including septal defects, vascular malformations, and valvular disease. Interestingly, 4 (8%) patients in the Radboudumc registry reported arrhythmias without CHD, including one atrial fibrillation (AF), two with supraventricular tachycardias, and one with non-sustained ventricular tachycardia. The GenIDA registry reported one patient with AF and another with chronic ectopic atrial tachycardia (AT). In total, atrial tachyarrhythmias were noted in six young KS patients (6/213 or 3%) with at least four (three AF and one AT) without structural heart disease. CONCLUSION: In addition to a high prevalence of CHD, evolving data reveal early-onset atrial tachyarrhythmias in young KS patients, including AF, even in the absence of structural heart disease.


Subject(s)
Atrial Fibrillation , Chromosome Deletion , Craniofacial Abnormalities , Heart Defects, Congenital , Intellectual Disability , Humans , Child, Preschool , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Tachycardia , Epigenesis, Genetic , Chromosomes, Human, Pair 9
17.
Brain ; 145(10): 3383-3390, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35737950

ABSTRACT

The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.


Subject(s)
Endocannabinoids , Nervous System Diseases , Humans , Child , Phenotype , Nervous System Diseases/genetics , Heterozygote , Syndrome , Mutant Proteins
18.
J Gastroenterol Hepatol ; 38(3): 433-440, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36574769

ABSTRACT

BACKGROUND AND AIM: Overt hepatic encephalopathy (OHE) has high risk of recurrence and is associated with poor survival. The role of nutrition therapy is well documented in cirrhosis, but its efficacy in preventing the recurrence of OHE has not been studied. METHODS: In double blind RCT, we randomly assigned 150 patients with liver cirrhosis, with history of OHE in recent past to receive nutrition therapy (group I) or no nutrition therapy (group II) and followed up for 6 months. The primary efficacy end points were occurrence of breakthrough episodes and time to breakthrough episode of OHE. Secondary end points were OHE related hospitalizations and time to hospitalization involving OHE. Other parameters included anthropometry, changes in serum cytokines (IL-1, IL-6, IL-10, and TNF-α), endotoxin and myostatin. RESULTS: There was significant reduction in occurrence of breakthrough episodes of OHE in group I [10 vs 36, hazard ratio 0.20; P < 0.001], OHE-related hospitalization [8 vs 24, hazard ratio 0.27; P < 0.001)]. Times to breakthrough episode of OHE and OHE-related hospitalization were longer in group I. At the end of 6 months, inflammatory and anthropometry parameters showed significant improvement in group I compared with worsening of serum albumin, anthropometric parameters, IL-6, IL-10 and TNF-α in group II. At the end of 6 months, ascites (50 vs 66, P = 0.01), gastrointestinal bleed (2 vs 11, P = 0.007), and jaundice (16 vs 41, P < 0.001) were lower in group I. CONCLUSIONS: Treatment with nutrition therapy prevented recurrence of OHE and decreased OHE-related hospitalizations as compared with no nutrition therapy.


Subject(s)
Hepatic Encephalopathy , Humans , Interleukin-10 , Interleukin-6 , Tumor Necrosis Factor-alpha , Liver Cirrhosis/complications
19.
J Gastroenterol Hepatol ; 38(11): 1917-1925, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37354045

ABSTRACT

BACKGROUND AND AIM: Minimal hepatic encephalopathy (MHE) reflects cognitive impairment in patients with liver cirrhosis and is associated with poor prognosis. We assessed the effects of nutritional therapy on cognitive functions, health-related quality of life (HRQOL), anthropometry, endotoxins, and inflammatory markers in cirrhotic patients with MHE. METHODS: In a double-blind randomized controlled trial, cirrhotic patients with MHE were randomized to nutritional therapy (group I: 30-35 kcal/kg/day and 1.0-1.5 g of protein/kg/day) and no nutritional therapy (group II: diet as patients were taking before) for 6 months. MHE was diagnosed based on psychometric hepatic encephalopathy score (PHES). Anthropometry, ammonia, endotoxins, inflammatory markers, myostatin, and HRQOL were assessed at baseline and after 6 months. Primary endpoints were improvement or worsening in MHE and HRQOL. RESULTS: A total of 150 patients were randomized to group I (n = 75, age 46.3 ± 12.5 years, 58 men) and group II (n = 75, age 45.2 ± 9.3 years, 56 men). Baseline PHES (-8.16 ± 1.42 vs -8.24 ± 1.43; P = 0.54) was comparable in both groups. Reversal of MHE was higher in group I (73.2% vs 21.4%; P = 0.001) than group II. Improvement in PHES (Δ PHES 4.0 ± 0.60 vs -4.18 ± 0.40; P = 0.001), HRQOL (Δ Sickness Impact Profile 3.24 ± 3.63 vs 0.54 ± 3.58; P = 0.001), anthropometry, ammonia, endotoxins, cytokines, and myostatin levels was also significantly higher in group I than group II. Overt hepatic encephalopathy developed in 6 patients in group I and 13 in group II (P = 0.04). CONCLUSIONS: Nutritional therapy is effective in treatment of MHE and associated with improvement in nutritional status, HRQOL, ammonia, endotoxins, inflammatory markers, and myostatin levels.


Subject(s)
Cognitive Dysfunction , Hepatic Encephalopathy , Adult , Humans , Male , Middle Aged , Ammonia , Cognitive Dysfunction/therapy , Cognitive Dysfunction/complications , Endotoxins , Hepatic Encephalopathy/therapy , Hepatic Encephalopathy/complications , Liver Cirrhosis/complications , Myostatin , Psychometrics , Quality of Life , Female
20.
J Med Internet Res ; 25: e38818, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36607708

ABSTRACT

BACKGROUND: Digital interventions for health financing, if implemented at scale, have the potential to improve health system performance by reducing transaction costs and improving data-driven decision-making. However, many interventions never reach sustainability, and evidence on success factors for scale is scarce. The Insurance Management Information System (IMIS) is a digital intervention for health financing, designed to manage an insurance scheme and already implemented on a national scale in Tanzania. A previous study found that the IMIS claim function was poorly adopted by health care workers (HCWs), questioning its potential to enable strategic purchasing and succeed at scale. OBJECTIVE: This study aimed to understand why the adoption of the IMIS claim function by HCWs remained low in Tanzania and to assess implications for use at scale. METHODS: We conducted 21 semistructured interviews with HCWs and management staff in 4 districts where IMIS was first implemented. We sampled respondents by using a maximum variation strategy. We used the framework method for data analysis, applying a combination of inductive and deductive coding to organize codes in a socioecological model. Finally, we related emerging themes to a framework for digital health interventions for scale. RESULTS: Respondents appreciated IMIS's intrinsic software characteristics and technical factors and acknowledged IMIS as a valuable tool to simplify claim management. Human factors, extrinsic ecosystem, and health care ecosystem were considered as barriers to widespread adoption. CONCLUSIONS: Digital interventions for health financing, such as IMIS, may have the potential for scale if careful consideration is given to the environment in which they are placed. Without a sustainable health financing environment, sufficient infrastructure, and human capacity, they cannot unfold their full potential to improve health financing functions and ultimately contribute to universal health coverage.


Subject(s)
Ecosystem , Healthcare Financing , Humans , Delivery of Health Care , Health Personnel , Qualitative Research
SELECTION OF CITATIONS
SEARCH DETAIL