Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(4): 761-777, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38503299

ABSTRACT

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Subject(s)
Epilepsy , Mutation, Missense , Neurodevelopmental Disorders , Shab Potassium Channels , Animals , Humans , Action Potentials , Epilepsy/genetics , Neurons , Oocytes , Xenopus laevis , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism , Neurodevelopmental Disorders/genetics
2.
Brain ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39378316

ABSTRACT

Increasing evidence indicates heterogeneity in functional and molecular properties of oligodendrocyte lineage cells both during development and under pathologic conditions. In multiple sclerosis, remyelination of grey matter lesions exceeds that in white matter. Here we used cells derived from grey matter versus white matter regions of surgically resected human brain tissue samples, to compare the capacities of human A2B5-positive progenitor cells and mature oligodendrocytes to ensheath synthetic nanofibers, and relate differences to the molecular profiles of these cells. For both cell types, the percentage of ensheathing cells was greater for grey matter versus white matter cells. For both grey matter and white matter samples, the percentage of cells ensheathing nanofibers was greater for A2B5-positive cells versus mature oligodendrocytes. Grey matter A2B5-positive cells were more susceptible than white matter A2B5-positive cells to injury induced by metabolic insults. Bulk RNA sequencing indicated that separation by cell type (A2B5-positive vs mature oligodendrocytes) is more significant than by region but segregation for each cell type by region is apparent. Molecular features of grey matter versus white matter derived A2B5-positive and mature oligodendrocytes were lower expression of mature oligodendrocyte genes and increased expression of early oligodendrocyte lineage genes. Genes and pathways with increased expression in grey matter derived cells with relevance for myelination included those related to responses to external environment, cell-cell communication, cell migration, and cell adhesion. Immune and cell death related genes were up-regulated in grey matter derived cells. We observed a significant number of up-regulated genes shared between the stress/injury and myelination processes, providing a basis for these features. In contrast to oligodendrocyte lineage cells, no functional or molecular heterogeneity was detected in microglia maintained in vitro, likely reflecting the plasticity of these cells ex vivo. The combined functional and molecular data indicate that grey matter human oligodendrocytes have increased intrinsic capacity to myelinate but also increased injury susceptibility, in part reflecting their being at a stage earlier in the oligodendrocyte lineage.

3.
Hum Genet ; 143(5): 667-681, 2024 May.
Article in English | MEDLINE | ID: mdl-38578438

ABSTRACT

CLCN4-related disorder is a rare X-linked neurodevelopmental condition with a pathogenic mechanism yet to be elucidated. CLCN4 encodes the vesicular 2Cl-/H+ exchanger ClC-4, and CLCN4 pathogenic variants frequently result in altered ClC-4 transport activity. The precise cellular and molecular function of ClC-4 remains unknown; however, together with ClC-3, ClC-4 is thought to have a role in the ion homeostasis of endosomes and intracellular trafficking. We reviewed our research database for patients with CLCN4 variants and epilepsy, and performed thorough phenotyping. We examined the functional properties of the variants in mammalian cells using patch-clamp electrophysiology, protein biochemistry, and confocal fluorescence microscopy. Three male patients with developmental and epileptic encephalopathy were identified, with differing phenotypes. Patients #1 and #2 had normal growth parameters and normal-appearing brains on MRI, while patient #3 had microcephaly, microsomia, complete agenesis of the corpus callosum and cerebellar and brainstem hypoplasia. The p.(Gly342Arg) variant of patient #1 significantly impaired ClC-4's heterodimerization capability with ClC-3 and suppressed anion currents. The p.(Ile549Leu) variant of patient #2 and p.(Asp89Asn) variant of patient #3 both shift the voltage dependency of transport activation by 20 mV to more hyperpolarizing potentials, relative to the wild-type, with p.(Asp89Asn) favouring higher transport activity. We concluded that p.(Gly342Arg) carried by patient #1 and the p.(Ile549Leu) expressed by patient #2 impair ClC-4 transport function, while the p.(Asp89Asn) variant results in a gain-of-transport function; all three variants result in epilepsy and global developmental impairment, but with differences in epilepsy presentation, growth parameters, and presence or absence of brain malformations.


Subject(s)
Chloride Channels , Epilepsy , Genetic Association Studies , Humans , Chloride Channels/genetics , Chloride Channels/metabolism , Male , Epilepsy/genetics , Child, Preschool , Child , Phenotype , Infant , Mutation
4.
Genet Med ; 26(5): 101097, 2024 05.
Article in English | MEDLINE | ID: mdl-38334070

ABSTRACT

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Subject(s)
Lysosomes , Neurodevelopmental Disorders , Sodium-Potassium-Chloride Symporters , Child , Child, Preschool , Female , Humans , Infant , Male , Alleles , Loss of Function Mutation/genetics , Lysosomes/genetics , Lysosomes/metabolism , Lysosomes/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Phenotype , Sodium-Potassium-Chloride Symporters/genetics
5.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314870

ABSTRACT

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesias , Movement Disorders , Male , Female , Humans , Netrin-1/genetics , DCC Receptor/genetics , Movement Disorders/genetics , Mutation, Missense/genetics , Rho Guanine Nucleotide Exchange Factors/genetics
6.
Cerebellum ; 23(2): 418-430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36971923

ABSTRACT

The term Pontocerebellar Hypoplasia (PCH) was initially used to designate a heterogeneous group of fetal-onset genetic neurodegenerative disorders. As a descriptive term, PCH refers to pons and cerebellum of reduced volume. In addition to the classic PCH types described in OMIM, many other disorders can result in a similar imaging appearance. This study aims to review imaging, clinical and genetic features and underlying etiologies of a cohort of children with PCH on imaging. We systematically reviewed brain images and clinical charts of 38 patients with radiologic evidence of PCH. Our cohort included 21 males and 17 females, with ages ranging between 8 days to 15 years. All individuals had pons and cerebellar vermis hypoplasia, and 63% had cerebellar hemisphere hypoplasia. Supratentorial anomalies were found in 71%. An underlying etiology was identified in 68% and included chromosomal (21%), monogenic (34%) and acquired (13%) causes. Only one patient had pathogenic variants in an OMIM listed PCH gene. Outcomes were poor regardless of etiology, though no one had regression. Approximately one third of patients deceased at a median age of 8 months. All individuals had global developmental delay, 50% were non-verbal, 64% were non-ambulatory and 45% required gastrostomy feeding. This cohort demonstrates that radiologic PCH has heterogenous etiologies and the "classic" OMIM-listed PCH genes underlie only a minority of cases. Broad genetic testing, including chromosomal microarray and exome or multigene panels, is recommended in individuals with PCH-like imaging appearance. Our results strongly suggest that the term PCH should be used to designate radiologic findings, and not to imply neurogenerative disorders.


Subject(s)
Cerebellar Diseases , Cerebellum/abnormalities , Nervous System Malformations , Male , Child , Female , Humans , Infant , Cerebellar Diseases/pathology , Cerebellum/pathology , Pons/diagnostic imaging , Magnetic Resonance Imaging , Developmental Disabilities
7.
J Med Genet ; 60(6): 523-532, 2023 06.
Article in English | MEDLINE | ID: mdl-36822643

ABSTRACT

PURPOSE AND SCOPE: The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT: A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS: Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Physicians , Humans , Child , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Canada , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Genetic Testing/methods , Intellectual Disability/diagnosis , Intellectual Disability/genetics
8.
Hum Genet ; 142(7): 909-925, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183190

ABSTRACT

Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Humans , Child , Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Genetic Association Studies , Seizures/genetics , Contactins/genetics
9.
J Neuroinflammation ; 20(1): 132, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37254100

ABSTRACT

BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.


Subject(s)
Microglia , Transcriptome , Humans , Child , Adolescent , Microglia/metabolism , Longevity , Phagocytosis , Sequence Analysis, RNA
10.
Genet Med ; 25(1): 90-102, 2023 01.
Article in English | MEDLINE | ID: mdl-36318270

ABSTRACT

PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.


Subject(s)
Brain Diseases , Dystonia , Movement Disorders , Humans , Animals , Rats , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism , Movement Disorders/genetics , Amines , Brain/metabolism
11.
Ann Neurol ; 91(2): 178-191, 2022 02.
Article in English | MEDLINE | ID: mdl-34952986

ABSTRACT

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Subject(s)
Aging/physiology , Cell Differentiation/physiology , Cellular Senescence/physiology , Myelin Sheath/physiology , Oligodendroglia/physiology , Adult , Cell Death , Cell Lineage , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Neural Stem Cells , RNA-Seq , Receptor, Platelet-Derived Growth Factor alpha , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Transcriptome , Young Adult
12.
Am J Med Genet A ; 191(9): 2416-2421, 2023 09.
Article in English | MEDLINE | ID: mdl-37248744

ABSTRACT

Heterozygous pathogenic variants in PPP2R5D gene are associated with PPP2R5D-related neurodevelopmental disorder, a rare autosomal dominant condition, characterized by neurodevelopmental impairment in childhood, macrocephaly/megalencephaly, hypotonia, epilepsy, and dysmorphic features. Up-to-date, only approximately 100 cases have been published in the literature and the full phenotypic and genotypic spectrum have not yet been fully described. PPP2R5D gene encodes the B56δ subunit of the PP2A enzyme complex. We describe a neonatal form of PPP2R5D-related disorder with early infantile death, caused by a novel in-frame deletion causing loss of 8 amino acids and insertion of serine at position 201 (p.Phe194_Pro201delinsSer) of the B56δ subunit. This deletion is predicted to disrupt a critical acidic loop of amino acids important for binding other subunits of the PP2A enzyme complex, and harbors many of the residues previously reported to cause a mild-moderate form of this condition. This report describes a neonatal lethal presentation of the PPP2R5D-related neurodevelopmental disorder and provides additional evidence that disruption of the acidic loop is an important pathomechanism underlying PPP2R5D-related disorder.


Subject(s)
Neurodevelopmental Disorders , Infant, Newborn , Humans , Neurodevelopmental Disorders/genetics , Amino Acids , Genotype , Protein Phosphatase 2/genetics
13.
Brain ; 145(12): 4320-4333, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35202462

ABSTRACT

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Oligodendroglia/metabolism , Brain/pathology , Cell Death , Glucose/metabolism , Cells, Cultured
14.
Brain ; 145(1): 208-223, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34382076

ABSTRACT

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Subject(s)
Alkyl and Aryl Transferases , Myoclonus , Neurodegenerative Diseases , Retinitis Pigmentosa , Child , Dolichols/metabolism , Humans , Neurodegenerative Diseases/genetics , Retinitis Pigmentosa/genetics
15.
Glia ; 70(10): 1938-1949, 2022 10.
Article in English | MEDLINE | ID: mdl-35735919

ABSTRACT

Morphological and emerging molecular studies have provided evidence for heterogeneity within the oligodendrocyte population. To address the regional and age-related heterogeneity of human mature oligodendrocytes (MOLs) we applied single-cell RNA sequencing to cells isolated from cortical/subcortical, subventricular zone brain tissue samples, and thoracolumbar spinal cord samples. Unsupervised clustering of cells identified transcriptionally distinct MOL subpopulations across regions. Spinal cord MOLs, but not microglia, exhibited cell-type-specific upregulation of immune-related markers compared to the other adult regions. SVZ MOLs showed an upregulation of select number of development-linked transcription factors compared to other regions; however, pseudotime trajectory analyses did not identify a global developmental difference. Age-related analysis of cortical/subcortical samples indicated that pediatric MOLs, especially from under age 5, retain higher expression of genes linked to development and to immune activity with pseudotime analysis favoring a distinct developmental stage. Our regional and age-related studies indicate heterogeneity of MOL populations in the human CNS that may reflect developmental and environmental influences.


Subject(s)
Oligodendroglia , Spinal Cord , Brain , Child , Child, Preschool , Humans , Microglia , Oligodendroglia/metabolism
16.
Am J Hum Genet ; 105(4): 854-868, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585109

ABSTRACT

Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).


Subject(s)
Axons/pathology , Cadherins/genetics , Corpus Callosum/pathology , Eye/pathology , Genitalia/pathology , Heart Defects, Congenital/genetics , Neurodevelopmental Disorders/genetics , Frameshift Mutation , Heterozygote , Humans , Neurodevelopmental Disorders/pathology
17.
CMAJ ; 194(7): E235-E241, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35193860

ABSTRACT

BACKGROUND: Antenatal corticosteroids reduce respiratory morbidity in preterm infants, but their use during late preterm gestation (34-36 weeks) is limited because their safety for longer-term child neurodevelopment is unclear. We sought to determine if fetuses with higher probability of exposure to antenatal corticosteroids had increased rates of prescriptions for attention-deficit/hyperactivity disorder (ADHD) medication in childhood, using a quasiexperimental design that better controls for confounding than existing observational studies. METHODS: We identified 16 358 children whose birthing parents were admitted for delivery between 31 + 0 (31 weeks, 0 days) and 36 + 6 weeks' gestation in 2000-2013, using a perinatal data registry from British Columbia, Canada, and linked their records with population-based child ADHD medication data (2000-2018). We used a regression discontinuity design to capitalize on the fact that pregnancies presenting for delivery immediately before and immediately after the clinical cut-off for antenatal corticosteroid administration of 34 + 0 weeks' gestation have very different levels of exposure to corticosteroids, but are otherwise similar with respect to confounders. RESULTS: Over a median follow-up period of 9 years, 892 (5.5%) children had 1 or more dispensations of ADHD medication. Children whose birthing parents were admitted for delivery just before the corticosteroid clinical cut-off of 34 + 0 weeks' gestation did not appear to be more likely to be prescribed ADHD medication than those admitted just after the cut-off (rate ratio 1.1, 95% confidence interval [CI] 0.8 to 1.6; 1.3 excess cases per 100 children, 95% CI -2.5 to 5.7). INTERPRETATION: We found little evidence that children with higher probability of exposure to antenatal corticosteroids have higher rates of ADHD prescriptions in childhood, supporting the safety of antenatal corticosteroids for this neurodevelopmental outcome.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Attention Deficit Disorder with Hyperactivity/epidemiology , Prenatal Care/methods , Prenatal Exposure Delayed Effects , Respiratory Distress Syndrome, Newborn/prevention & control , Adrenal Cortex Hormones/adverse effects , Child , Female , Follow-Up Studies , Humans , Infant, Newborn , Pregnancy , Pregnancy Trimester, Third , Regression Analysis
18.
Neuroradiology ; 64(11): 2163-2177, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35670822

ABSTRACT

PURPOSE: To explore the relationships between clinical-radiological features and surgical outcomes in subjects with interhemispheric cysts (IHC) and corpus callosum anomalies. METHODS: We reviewed the clinico-radiological and neurosurgical data of 38 patients surgically treated with endoscopic fenestration, shunting, or combined approaches from 2000 to 2018 (24 males, median age 9 years). Pre- and postoperative changes in IHC volume were calculated. Outcome assessment was based on clinico-radiological data. Group comparisons were performed using χ2, Fisher exact, Mann-Whitney U, and Kruskal-Wallis tests. RESULTS: Median age at first surgery was 4 months (mean follow-up 8.3 years). Eighteen individuals (47.3%) required > 1 intervention due to IHC regrowth and/or shunt malfunction. Larger preoperative IHC volume (P = .008) and younger age at surgery (P = .016) were associated with cyst regrowth. At last follow-up, mean cystic volume was 307.8 cm3, with IHC volume reduction > 66% in 19/38 (50%) subjects. The neurological outcome was good in 14/38 subjects (36.8%), fair in 18/38 (47.3%), and poor in 6/38 (15.7%). There were no differences in the postoperative cyst volume with respect to either the type of first surgery or overall surgery type. Higher absolute postoperative IHC reduction was observed in subjects who underwent both IHC fenestration and shunting procedures (P < .0001). No differences in neurological outcome were found according to patient age at surgery or degree of IHC reduction. CONCLUSION: Endoscopic fenestration and shunting approaches are both effective but often require multiple procedures especially in younger patients. Larger IHC are more frequently complicated by cyst regrowth after surgery.


Subject(s)
Corpus Callosum , Cysts , Child , Corpus Callosum/diagnostic imaging , Corpus Callosum/surgery , Cysts/diagnostic imaging , Cysts/surgery , Endoscopy/methods , Humans , Infant , Magnetic Resonance Imaging , Male , Neurosurgical Procedures/methods , Retrospective Studies , Treatment Outcome
19.
Genet Med ; 23(5): 881-887, 2021 05.
Article in English | MEDLINE | ID: mdl-33473207

ABSTRACT

PURPOSE: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. METHODS: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. RESULTS: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. CONCLUSION: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Developmental Disabilities/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Seizures/genetics , Exome Sequencing
20.
Cerebellum ; 20(4): 631-658, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33534089

ABSTRACT

Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.


Subject(s)
Cerebellar Diseases , Nervous System Malformations , Cerebellar Diseases/diagnostic imaging , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Child , Developmental Disabilities/diagnosis , Humans , Magnetic Resonance Imaging , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/genetics
SELECTION OF CITATIONS
SEARCH DETAIL