Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Food Sci Technol ; 55(8): 3314-3324, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30065443

ABSTRACT

This study was designed to compare the performances of four different non-destructive methods of assessing onion quality, one of which was based on near-infrared spectroscopy, and three of which were based on spectral imaging. These methods involve a combination of wavelengths from visible to near-infrared with different acquisition systems that were applied to discriminate between pre-sorted onions by in situ measurements of the onion surface. Compared with the partial least squares discriminant analysis classification models associated with different methods, hyperspectral imaging (HSI) with both static horizontal and rotating orientation obtained a higher level of sensitivity and specificity with a lower classification error than did other methods. Moreover, models built with the reduced variables did not lower the model performances. Overall, these results demonstrate that HSI with selected wavelengths would be useful for further developing an improved real-time system for sorting onion bulbs.

2.
Appl Spectrosc ; 72(10): 1467-1478, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30008226

ABSTRACT

A firm texture of dry onions is important for consumer acceptance. Both the texture and dry matter content decline during storage, influencing the market value of onions. The main goal of this study was to develop predictive models that in future might form the basis for automated sorting of onions for firmness and dry matter content in the industry. Hyperspectral scanning was conducted in reflectance mode for six commercial batches of onions that were monitored three times during storage. Mean spectra from the region of interest were extracted and partial least squares regression (PLSR) models were constructed. Feature wavelengths were identified using variable selection techniques resulting from interval partial least squares and recursive partial least squares analyses. The PLSR model for firmness gave a root mean square error of cross-validation (RMSECV) of 0.84 N, and a root mean square error of prediction (RMSEP) of 0.73 N, with coefficients of determination ( R2) of 0.72 and 0.83, respectively. The RMSECV and RMSEP of the PLSR model for dry matter content were 0.10% and 0.08%, respectively, with a R2 of 0.58 and 0.79, respectively. The whole wavelength range and selected wavelengths showed nearly similar results for both dry matter content and firmness. The results obtained from this study clearly reveal that hyperspectral imaging of onion bulbs with selected wavelengths, coupled with chemometric modeling, can be used for the noninvasive determination of the firmness and dry matter content of stored onion bulbs.

SELECTION OF CITATIONS
SEARCH DETAIL