Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30510107

ABSTRACT

Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Coccidiosis/complications , Coinfection , Eimeria tenella , Poultry Diseases/microbiology , Poultry Diseases/parasitology , Animals , Cecum/microbiology , Coinfection/microbiology , Coinfection/parasitology
2.
Infection ; 47(4): 661-664, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31025216

ABSTRACT

CASE PRESENTATION: We present a case report of a woman, concurrently colonized by polymyxin-resistant E. coli and K. pneumoniae. A Brazilian female patient, in her mid-fifties, was hospitalized with schistosomiasis. During hospitalization, polymyxin-resistant E. coli and K. pneumoniae were isolated from surveillance cultures. METHODS: Identification, antimicrobial susceptibility testings, PCR for mcr-1, plasmid transfer by conjugation and whole genome sequencing were performed. RESULTS: E. coli ST744 and K. pneumoniae ST101 carrying mcr-1 gene were described. Transconjugant E. coli was positive for mcr-1 and IncX4 by PCR. The plasmid is a 33,304-base pair plasmid, and the mcr-1 gene was the only antimicrobial resistance gene present in the plasmid. CONCLUSIONS: This study presents a case report of a hospitalized woman, concurrently colonized by mcr-1-harboring E. coli ST744, a different ST from previously described in Brazil, and a K. pneumoniae ST101.


Subject(s)
Bacterial Proteins/analysis , Drug Resistance, Bacterial , Escherichia coli Infections/diagnosis , Escherichia coli/genetics , Klebsiella Infections/diagnosis , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Brazil , Escherichia coli/isolation & purification , Escherichia coli Proteins/analysis , Female , Humans , Klebsiella pneumoniae/isolation & purification , Middle Aged
3.
J Bacteriol ; 200(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29339415

ABSTRACT

Escherichia coli K1 strains are major causative agents of invasive disease of newborn infants. The age dependency of infection can be reproduced in neonatal rats. Colonization of the small intestine following oral administration of K1 bacteria leads rapidly to invasion of the blood circulation; bacteria that avoid capture by the mesenteric lymphatic system and evade antibacterial mechanisms in the blood may disseminate to cause organ-specific infections such as meningitis. Some E. coli K1 surface constituents, in particular the polysialic acid capsule, are known to contribute to invasive potential, but a comprehensive picture of the factors that determine the fully virulent phenotype has not emerged so far. We constructed a library and constituent sublibraries of ∼775,000 Tn5 transposon mutants of E. coli K1 strain A192PP and employed transposon-directed insertion site sequencing (TraDIS) to identify genes required for fitness for infection of 2-day-old rats. Transposon insertions were lacking in 357 genes following recovery on selective agar; these genes were considered essential for growth in nutrient-replete medium. Colonization of the midsection of the small intestine was facilitated by 167 E. coli K1 gene products. Restricted bacterial translocation across epithelial barriers precluded TraDIS analysis of gut-to-blood and blood-to-brain transits; 97 genes were required for survival in human serum. This study revealed that a large number of bacterial genes, many of which were not previously associated with systemic E. coli K1 infection, are required to realize full invasive potential.IMPORTANCEEscherichia coli K1 strains cause life-threatening infections in newborn infants. They are acquired from the mother at birth and colonize the small intestine, from where they invade the blood and central nervous system. It is difficult to obtain information from acutely ill patients that sheds light on physiological and bacterial factors determining invasive disease. Key aspects of naturally occurring age-dependent human infection can be reproduced in neonatal rats. Here, we employ transposon-directed insertion site sequencing to identify genes essential for the in vitro growth of E. coli K1 and genes that contribute to the colonization of susceptible rats. The presence of bottlenecks to invasion of the blood and cerebrospinal compartments precluded insertion site sequencing analysis, but we identified genes for survival in serum.


Subject(s)
Antigens, Bacterial/genetics , DNA Transposable Elements , Escherichia coli Infections/blood , Escherichia coli/genetics , Gastrointestinal Tract/microbiology , Genome, Bacterial , Polysaccharides, Bacterial/genetics , Age Factors , Animals , Animals, Newborn , Disease Models, Animal , Escherichia coli/growth & development , Escherichia coli/pathogenicity , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Female , Genetic Fitness , Humans , Microbial Viability/drug effects , Mutagenesis , Mutation , Rats , Rats, Wistar , Serum/microbiology , Virulence/genetics
4.
Clin Infect Dis ; 66(6): 840-848, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29095965

ABSTRACT

Background: Recent evidence suggests that hospital transmission of methicillin-resistant Staphylococcus aureus (MRSA) is uncommon in UK centers that have implemented sustained infection control programs. We investigated whether a healthcare-network analysis could shed light on transmission paths currently sustaining MRSA levels in UK hospitals. Methods: A cross-sectional observational study was performed in 2 National Health Service hospital groups and a general district hospital in Southeast London. All MRSA patients identified at inpatient, outpatient, and community settings between 1 November 2011 and 29 February 2012 were included. We identified genetically defined MRSA transmission clusters in individual hospitals and across the healthcare network, and examined genetic differentiation of sequence type (ST) 22 MRSA isolates within and between hospitals and inpatient or outpatient and community settings, as informed by average and median pairwise single-nucleotide polymorphisms (SNPs) and SNP-based proportions of nearly identical isolates. Results: Two hundred forty-eight of 610 (40.7%) MRSA patients were linked in 90 transmission clusters, of which 27 spanned multiple hospitals. Analysis of a large 32 patient ST22-MRSA cluster showed that 26 of 32 patients (81.3%) had multiple contacts with one another during ward stays at any hospital. No residential, outpatient, or significant community healthcare contacts were identified. Genetic differentiation between ST22 MRSA inpatient isolates from different hospitals was less than between inpatient isolates from the same hospitals (P ≤ .01). Conclusions: There is evidence of frequent ward-based transmission of MRSA brought about by frequent patient admissions to multiple hospitals. Limiting in-ward transmission requires sharing of MRSA status data between hospitals.


Subject(s)
Cross Infection/microbiology , Cross Infection/transmission , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/transmission , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Cross Infection/epidemiology , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Female , Genome, Bacterial , Hospitals/statistics & numerical data , Humans , Infection Control , Inpatients , London/epidemiology , Male , Methicillin/pharmacology , Middle Aged , Multigene Family , Polymorphism, Single Nucleotide , Staphylococcal Infections/epidemiology , Whole Genome Sequencing
5.
BMC Microbiol ; 18(1): 46, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855259

ABSTRACT

BACKGROUND: Yersinia pseudotuberculosis is a zoonotic pathogen, causing mild gastrointestinal infection in humans. From this comparatively benign pathogenic species emerged the highly virulent plague bacillus, Yersinia pestis, which has experienced significant genetic divergence in a relatively short time span. Much of our knowledge of Yersinia spp. evolution stems from genomic comparison and gene expression studies. Here we apply transposon-directed insertion site sequencing (TraDIS) to describe the essential gene set of Y. pseudotuberculosis IP32953 in optimised in vitro growth conditions, and contrast these with the published essential genes of Y. pestis. RESULTS: The essential genes of an organism are the core genetic elements required for basic survival processes in a given growth condition, and are therefore attractive targets for antimicrobials. One such gene we identified is yptb3665, which encodes a peptide deformylase, and here we report for the first time, the sensitivity of Y. pseudotuberculosis to actinonin, a deformylase inhibitor. Comparison of the essential genes of Y. pseudotuberculosis with those of Y. pestis revealed the genes whose importance are shared by both species, as well as genes that were differentially required for growth. In particular, we find that the two species uniquely rely upon different iron acquisition and respiratory metabolic pathways under similar in vitro conditions. CONCLUSIONS: The discovery of uniquely essential genes between the closely related Yersinia spp. represent some of the fundamental, species-defining points of divergence that arose during the evolution of Y. pestis from its ancestor. Furthermore, the shared essential genes represent ideal candidates for the development of novel antimicrobials against both species.


Subject(s)
Genes, Essential , Mutagenesis, Insertional/methods , Yersinia pestis/growth & development , Yersinia pseudotuberculosis/growth & development , Bacterial Proteins/genetics , DNA Transposable Elements , Evolution, Molecular , Genetic Speciation , Humans , Sequence Analysis, DNA , Yersinia pestis/genetics , Yersinia pseudotuberculosis/genetics
6.
J Biol Chem ; 291(49): 25450-25461, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27703012

ABSTRACT

Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439-25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains.


Subject(s)
Bacterial Adhesion/physiology , Biofilms/growth & development , Clostridioides difficile/physiology , Flagellin/metabolism , Glycosyltransferases/metabolism , Caco-2 Cells , Clostridioides difficile/pathogenicity , Flagellin/genetics , Glycosylation , Humans , Toll-Like Receptor 5/metabolism
7.
Article in English | MEDLINE | ID: mdl-28784667

ABSTRACT

Neisseria gonorrhoeae is one of the leading antimicrobial resistance threats worldwide. This study determined the MICs of closthioamide to be 0.008 to 0.5 mg/liter for clinical N. gonorrhoeae strains and related species. Cross-resistance with existing antimicrobial resistance was not detected, indicating that closthioamide could be used to treat drug-resistant N. gonorrhoeae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Neisseria gonorrhoeae/drug effects , Thioamides/pharmacology , Drug Resistance, Microbial/physiology , Gonorrhea/drug therapy , Humans , Microbial Sensitivity Tests
8.
PLoS Med ; 13(1): e1001944, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26812054

ABSTRACT

BACKGROUND: Identifying and tackling the social determinants of infectious diseases has become a public health priority following the recognition that individuals with lower socioeconomic status are disproportionately affected by infectious diseases. In many parts of the world, epidemiologically and genotypically defined community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) strains have emerged to become frequent causes of hospital infection. The aim of this study was to use spatial models with adjustment for area-level hospital attendance to determine the transmission niche of genotypically defined CA- and health-care-associated (HA)-MRSA strains across a diverse region of South East London and to explore a potential link between MRSA carriage and markers of social and material deprivation. METHODS AND FINDINGS: This study involved spatial analysis of cross-sectional data linked with all MRSA isolates identified by three National Health Service (NHS) microbiology laboratories between 1 November 2011 and 29 February 2012. The cohort of hospital-based NHS microbiology diagnostic services serves 867,254 usual residents in the Lambeth, Southwark, and Lewisham boroughs in South East London, United Kingdom (UK). Isolates were classified as HA- or CA-MRSA based on whole genome sequencing. All MRSA cases identified over 4 mo within the three-borough catchment area (n = 471) were mapped to small geographies and linked to area-level aggregated socioeconomic and demographic data. Disease mapping and ecological regression models were used to infer the most likely transmission niches for each MRSA genetic classification and to describe the spatial epidemiology of MRSA in relation to social determinants. Specifically, we aimed to identify demographic and socioeconomic population traits that explain cross-area extra variation in HA- and CA-MRSA relative risks following adjustment for hospital attendance data. We explored the potential for associations with the English Indices of Deprivation 2010 (including the Index of Multiple Deprivation and several deprivation domains and subdomains) and the 2011 England and Wales census demographic and socioeconomic indicators (including numbers of households by deprivation dimension) and indicators of population health. Both CA-and HA-MRSA were associated with household deprivation (CA-MRSA relative risk [RR]: 1.72 [1.03-2.94]; HA-MRSA RR: 1.57 [1.06-2.33]), which was correlated with hospital attendance (Pearson correlation coefficient [PCC] = 0.76). HA-MRSA was also associated with poor health (RR: 1.10 [1.01-1.19]) and residence in communal care homes (RR: 1.24 [1.12-1.37]), whereas CA-MRSA was linked with household overcrowding (RR: 1.58 [1.04-2.41]) and wider barriers, which represent a combined score for household overcrowding, low income, and homelessness (RR: 1.76 [1.16-2.70]). CA-MRSA was also associated with recent immigration to the UK (RR: 1.77 [1.19-2.66]). For the area-level variation in RR for CA-MRSA, 28.67% was attributable to the spatial arrangement of target geographies, compared with only 0.09% for HA-MRSA. An advantage to our study is that it provided a representative sample of usual residents receiving care in the catchment areas. A limitation is that relationships apparent in aggregated data analyses cannot be assumed to operate at the individual level. CONCLUSIONS: There was no evidence of community transmission of HA-MRSA strains, implying that HA-MRSA cases identified in the community originate from the hospital reservoir and are maintained by frequent attendance at health care facilities. In contrast, there was a high risk of CA-MRSA in deprived areas linked with overcrowding, homelessness, low income, and recent immigration to the UK, which was not explainable by health care exposure. Furthermore, areas adjacent to these deprived areas were themselves at greater risk of CA-MRSA, indicating community transmission of CA-MRSA. This ongoing community transmission could lead to CA-MRSA becoming the dominant strain types carried by patients admitted to hospital, particularly if successful hospital-based MRSA infection control programmes are maintained. These results suggest that community infection control programmes targeting transmission of CA-MRSA will be required to control MRSA in both the community and hospital. These epidemiological changes will also have implications for effectiveness of risk-factor-based hospital admission MRSA screening programmes.


Subject(s)
Community-Acquired Infections/epidemiology , Cross Infection , Maternal Deprivation , Methicillin-Resistant Staphylococcus aureus , Social Isolation , Staphylococcal Infections/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Community-Acquired Infections/diagnosis , Community-Acquired Infections/psychology , Cross-Sectional Studies , Data Interpretation, Statistical , Female , Humans , Infant , Infant, Newborn , London/epidemiology , Male , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Middle Aged , Social Isolation/psychology , Staphylococcal Infections/diagnosis , Staphylococcal Infections/psychology , Young Adult
9.
Infect Immun ; 83(9): 3704-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26150540

ABSTRACT

Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate.


Subject(s)
Escherichia coli Infections/metabolism , Escherichia coli/pathogenicity , Peptides/metabolism , Polyketides/metabolism , Animals , Animals, Newborn , Base Sequence , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli Infections/genetics , Genomic Islands/genetics , Immunohistochemistry , Molecular Sequence Data , Peptides/genetics , Polymerase Chain Reaction , Rats , Rats, Wistar , Virulence/physiology
10.
Infect Immun ; 83(1): 17-27, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25312958

ABSTRACT

The formation of an incapacitating biofilm on Caenorhabditis elegans by Yersinia pseudotuberculosis represents a tractable model for investigating the genetic basis for host-pathogen interplay during the biofilm-mediated infection of a living surface. Previously we established a role for quorum sensing (QS) and the master motility regulator, FlhDC, in biofilm formation by Y. pseudotuberculosis on C. elegans. To obtain further genome-wide insights, we used transcriptomic analysis to obtain comparative information on C. elegans in the presence and absence of biofilm and on wild-type Y. pseudotuberculosis and Y. pseudotuberculosis QS mutants. Infection of C. elegans with the wild-type Y. pseudotuberculosis resulted in the differential regulation of numerous genes, including a distinct subset of nematode C-lectin (clec) and fatty acid desaturase (fat) genes. Evaluation of the corresponding C. elegans clec-49 and fat-3 deletion mutants showed delayed biofilm formation and abolished biofilm formation, respectively. Transcriptomic analysis of Y. pseudotuberculosis revealed that genes located in both of the histidine utilization (hut) operons were upregulated in both QS and flhDC mutants. In addition, mutation of the regulatory gene hutC resulted in the loss of biofilm, increased expression of flhDC, and enhanced swimming motility. These data are consistent with the existence of a regulatory cascade in which the Hut pathway links QS and flhDC. This work also indicates that biofilm formation by Y. pseudotuberculosis on C. elegans is an interactive process during which the initial attachment/recognition of Yersinia to/by C. elegans is followed by bacterial growth and biofilm formation.


Subject(s)
Biofilms/growth & development , Caenorhabditis elegans/immunology , Caenorhabditis elegans/microbiology , Host-Pathogen Interactions , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis/physiology , Animals , Gene Expression Profiling
11.
Infect Immun ; 82(12): 4989-96, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25225246

ABSTRACT

Clostridium difficile is an important nosocomial pathogen and the leading cause of antibiotic-associated diarrhea. Multilocus sequence typing indicates that C. difficile strains belong to five distinct genetic clades encompassing several PCR ribotypes (RT). Since their emergence in 2003, hypervirulent RT027 strains have been a major focus of research; in contrast, our current understanding of RT017-mediated disease pathogenesis lags far behind. In this study, we aimed to characterize host immunity to CF5 and M68, two genetically well-defined RT017 strains. Both strains engaged with host Toll-like receptor 2/6 (TLR2/6), TLR2-CD14, and TLR5 to similar extents in a model cell line. Despite this, CF5 mediated significantly greater dendritic cell (DC) interleukin-12 (IL-12), IL-27, and IL-10 immunity than M68. Both strains elicited similar IL-1ß mRNA levels, and yet only M68 caused a marked increase in secretory IL-1ß. A CF5 cocultured-DC cytokine milieu drove an equipotent Th1 and Th17 response, while M68 promoted greater Th17 immunity. Human gastrointestinal ex vivo cytokine responses to both strains were characterized. Taken together, our data suggest that C. difficile strains mediate overlapping and yet distinct mucosal and DC/T cell immunity. Finally, toxin-driven IL-1ß release supports the hypothesis that this cytokine axis is a likely target for therapeutic intervention for C. difficile infection.


Subject(s)
Clostridioides difficile/classification , Clostridioides difficile/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Ribotyping , T-Lymphocytes/immunology , Animals , Cells, Cultured , Clostridioides difficile/genetics , Coculture Techniques , Humans , Mice, Inbred C57BL
12.
Microorganisms ; 12(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38930521

ABSTRACT

Escherichia coli, a member of the commensal intestinal microbiota, is a significant aetiology of urinary tract infections (UTIs) and has a propensity for acquiring multidrug resistance characteristics, such as extended-spectrum beta-lactamases (ESBLs). Despite the increase in the incidence of ESBL-producing E. coli infections in sub-Saharan Africa, routine ESBL detection in Ghana is often absent, and molecular data on ESBL genotypes is scarce. Eleven ESBL-producing E. coli recovered from mid-stream urine samples were subjected to antimicrobial susceptibility testing and whole-genome sequence analyses. All isolates exhibited multidrug resistance, demonstrating phenotypic resistance to third-generation cephalosporins, such as cefotaxime, ceftazidime, and cefpodoxime. Three isolates demonstrated resistance to norfloxacin (a fluoroquinolone), and one isolate demonstrated intermediate resistance to ertapenem (a carbapenem). Analysis of the draft genomes identified multiple antimicrobial resistance genes including ESBL genotypes blaTEM-1B/TEM-190 (6/11 and 1/11, respectively), blaCTX-M-15/CTX-M-3 (7/11 and 1/11) and blaOXA-1/OXA-181 (3/11 and 1/11). The strains belong to 10 different serotypes and 10 different multilocus sequence types. This study provides information on phenotypic resistance in 11 ESBL E. coli from Ghana and AMR genotypes within their genomes.

13.
Infect Immun ; 81(9): 3264-75, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23798529

ABSTRACT

Two-day-old (P2), but not 9-day-old (P9), rat pups are susceptible to systemic infection following gastrointestinal colonization by Escherichia coli K1. Age dependency reflects the capacity of colonizing K1 to translocate from gastrointestinal (GI) tract to blood. A complex GI microbiota developed by P2, showed little variation over P2 to P9, and did not prevent stable K1 colonization. Substantial developmental expression was observed over P2 to P9, including upregulation of genes encoding components of the small intestinal (α-defensins Defa24 and Defa-rs1) and colonic (trefoil factor Tff2) mucus barrier. K1 colonization modulated expression of these peptides: developmental expression of Tff2 was dysregulated in P2 tissues and was accompanied by a decrease in mucin Muc2. Conversely, α-defensin genes were upregulated in P9 tissues. We propose that incomplete development of the mucus barrier during early neonatal life and the capacity of colonizing K1 to interfere with mucus barrier maturation provide opportunities for neuropathogen translocation into the bloodstream.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Intestine, Small/immunology , Intestine, Small/microbiology , Animals , Animals, Newborn , Colon/immunology , Colon/metabolism , Colon/microbiology , Gastrointestinal Tract/metabolism , Immunity, Innate/immunology , Intestine, Small/metabolism , Microbiota/genetics , Microbiota/immunology , Mucins/genetics , Mucins/immunology , Mucins/metabolism , Mucus/immunology , Mucus/metabolism , Mucus/microbiology , Peptides/genetics , Peptides/immunology , Peptides/metabolism , Rats , Trefoil Factor-2 , Up-Regulation/genetics , Up-Regulation/immunology , alpha-Defensins/genetics , alpha-Defensins/immunology , alpha-Defensins/metabolism
14.
Environ Microbiol ; 15(8): 2371-83, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23530835

ABSTRACT

Campylobacter jejuni is the leading cause of human bacterial gastroenteritis worldwide, but source attribution of the organism is difficult. Previously, DNA microarrays were used to investigate isolate source, which suggested a non-livestock source of infection. In this study we analysed the genome content of 162 clinical, livestock and water and wildlife (WW) associated isolates combined with the previous study. Isolates were grouped by genotypes into nine clusters (C1 to C9). Multilocus sequence typing (MLST) data demonstrated that livestock associated clonal complexes dominated clusters C1-C6. The majority of WW isolates were present in the C9 cluster. Analysis of previously reported genomic variable regions demonstrated that these regions were linked to specific clusters. Two novel variable regions were identified. A six gene multiplex PCR (mPCR) assay, designed to effectively differentiated strains into clusters, was validated with 30 isolates. A further five WW isolates were tested by mPCR and were assigned to the C7-C9 group of clusters. The predictive mPCR test could be used to indicate if a clinical case has come from domesticated or WW sources. Our findings provide further evidence that WW C. jejuni subtypes show niche adaptation and may be important in causing human infection.


Subject(s)
Animals, Wild/microbiology , Bacterial Typing Techniques , Campylobacter jejuni/classification , Campylobacter jejuni/genetics , Water Microbiology , Animals , Campylobacter jejuni/isolation & purification , Genome, Bacterial/genetics , Genotype , Humans , Livestock/microbiology , Multilocus Sequence Typing , Oligonucleotide Array Sequence Analysis
15.
Proc Natl Acad Sci U S A ; 107(16): 7527-32, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20368420

ABSTRACT

Clostridium difficile has rapidly emerged as the leading cause of antibiotic-associated diarrheal disease, with the transcontinental spread of various PCR ribotypes, including 001, 017, 027 and 078. However, the genetic basis for the emergence of C. difficile as a human pathogen is unclear. Whole genome sequencing was used to analyze genetic variation and virulence of a diverse collection of thirty C. difficile isolates, to determine both macro and microevolution of the species. Horizontal gene transfer and large-scale recombination of core genes has shaped the C. difficile genome over both short and long time scales. Phylogenetic analysis demonstrates C. difficile is a genetically diverse species, which has evolved within the last 1.1-85 million years. By contrast, the disease-causing isolates have arisen from multiple lineages, suggesting that virulence evolved independently in the highly epidemic lineages.


Subject(s)
Clostridioides difficile/genetics , Evolution, Molecular , Computational Biology , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Genome, Bacterial , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Recombination, Genetic , Sequence Analysis, DNA , Species Specificity , Time Factors , Virulence
16.
BMC Genomics ; 13: 569, 2012 Oct 29.
Article in English | MEDLINE | ID: mdl-23107513

ABSTRACT

BACKGROUND: We applied comparative phylogenomics (whole genome comparisons of microbes using DNA microarrays combined with Bayesian-based phylogenies) to investigate S. pneumoniae isolates from West Africa, with the aim of providing insights into the pathogenicity and other features related to the biology of the organism. The strains investigated comprised a well defined collection of 58 invasive and carriage isolates that were sequenced typed and included eight different S. pneumoniae serotypes (1, 3, 5, 6A, 11, 14, 19 F and 23 F) of varying invasive disease potential. RESULTS: The core genome of the isolates was estimated to be 38% and was mainly represented by gene functional categories associated with housekeeping functions. Comparison of the gene content of invasive and carriage isolates identified at least eleven potential genes that may be important in virulence including surface proteins, transport proteins, transcription factors and hypothetical proteins. Thirteen accessory regions (ARs) were also identified and did not show any loci association with the eleven virulence genes. Intraclonal diversity (isolates of the same serotype and MLST but expressing different patterns of ARs) was observed among some clones including ST 1233 (serotype 5), ST 3404 (serotype 5) and ST 3321 (serotype 14). A constructed phylogenetic tree of the isolates showed a high level of heterogeneity consistent with the frequent S. pneumoniae recombination. Despite this, a homogeneous clustering of all the serotype 1 strains was observed. CONCLUSIONS: Comparative phylogenomics of invasive and carriage S. pneumoniae isolates identified a number of putative virulence determinants that may be important in the progression of S. pneumoniae from the carriage phase to invasive disease. Virulence determinants that contribute to S. pneumoniae pathogenicity are likely to be distributed randomly throughout its genome rather than being clustered in dedicated loci or islands. Compared to other S. pneumoniae serotypes, serotype 1 appears most genetically uniform.


Subject(s)
Bacterial Proteins/genetics , Genes, Bacterial , Nasopharynx/microbiology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Africa, Western , Bayes Theorem , Carrier Proteins/genetics , Carrier State/microbiology , Genetic Variation , Humans , Multilocus Sequence Typing , Oligonucleotide Array Sequence Analysis , Phylogeny , Serotyping , Streptococcus pneumoniae/isolation & purification , Transcription Factors/genetics , Virulence
17.
Appl Environ Microbiol ; 78(5): 1411-5, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22194296

ABSTRACT

The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal concentrations of TSP. Preexposure of C. jejuni to TSP resulted in a significant increase in heat sensitivity, suggesting that a combined heat and TSP treatment may increase reduction of C. jejuni. A microarray analysis identified a limited number of genes that were differently expressed after sublethal TSP exposure; however, the response was mainly associated with ion transport processes. C. jejuni NCTC11168 nhaA1 (Cj1655c) and nhaA2 (Cj1654c), which encode orthologues to the Escherichia coli NhaA cation/proton antiporter, were able to partially restore TSP, alkaline, and sodium resistance phenotypes to an E. coli cation/proton antiporter mutant. In addition, inhibition of resistance-nodulation-cell division (RND) multidrug efflux pumps by the inhibitor PaßN (Phe-Arg ß-naphthylamide dihydrochloride) decreased tolerance to sublethal TSP. Therefore, we propose that NhaA1/NhaA2 cation/proton antiporters and RND multidrug efflux pumps function in tolerance to sublethal TSP exposure in C. jejuni.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/drug effects , Phosphates/pharmacology , Stress, Physiological , Biological Transport , Campylobacter jejuni/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Microarray Analysis
18.
Curr Microbiol ; 65(4): 398-406, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22735984

ABSTRACT

A set of C. jejuni isolates of different origins and flaA-genotypes obtained throughout the broiler meat production chain was tested in this study for a possible correlation of their origin, phylogenetic relationship, and phenotypic properties. Interestingly, the results showed a correlation of the origin and the phylogenetic relationship between the C. jejuni isolates and their ability to form biofilm, but not in their ability to survive at -18, 5, 20, and 48 °C. Two strains, a broiler cloacae isolate and a broiler fillet isolate, were unable to develop biofilm, while most of the C. jejuni isolates originating from meat and surfaces of the slaughterhouse readily formed biofilms after both 24, 48, and 72 h. Interestingly, these biofilm-forming strains were closely related. Furthermore, two strains that were isolated after disinfection developed significantly more biofilms after 24 h of incubation than the remaining strains. A comparative genomic analysis using DNA microarrays showed that the gene contents of strains that efficiently formed biofilms were different from those that did not. The study suggests that biofilm formation might be a lineage specific property, allowing C. jejuni to both survive environmental stress at the slaughterhouse and to attach to the surface of meat.


Subject(s)
Campylobacter jejuni/classification , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Meat/microbiology , Animals , Biofilms/growth & development , Campylobacter jejuni/genetics , Campylobacter jejuni/physiology , Cluster Analysis , Colony Count, Microbial , Comparative Genomic Hybridization , Flagellin/genetics , Food Industry , Genotype , Microarray Analysis , Microbial Viability/radiation effects , Multilocus Sequence Typing , Phenotype , Phylogeny , Temperature
19.
Microorganisms ; 10(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36296171

ABSTRACT

Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis worldwide but is rarely transferred between human hosts. Although a recognized microaerophile, the majority of C. jejuni are incapable of growing in an aerobic environment. The persistence and transmission of this pathogen outside its warm-blooded avian and mammalian hosts is poorly understood. Acanthamoebae species are predatory protists and form an important ecological niche with several bacterial species. Here, we investigate the interaction of C. jejuni 11168H and Acanthamoebae castellanii at the single-cell level. We observe that a subpopulation of C. jejuni cells can resist killing by A. castellanii, and non-digested bacteria are exocytosed into the environment where they can persist. In addition, we observe that A. castellanii can harbor C. jejuni 11168H even upon encystment. Transcriptome analyses of C. jejuni interactions revealed similar survival mechanisms when infecting both A. castellanii and warm-blooded hosts. In particular, nitrosative stress defense mechanisms and flagellum function are important as confirmed by mutational analyses of C. jejuni 11168H. This study describes a new host-pathogen interaction for C. jejuni and confirms that amoebae are transient hosts for the persistence, adaptability, and potential transmission of C. jejuni.

20.
Front Immunol ; 13: 853690, 2022.
Article in English | MEDLINE | ID: mdl-35812377

ABSTRACT

The complement system is required for innate immunity against Acinetobacter baumannii, an important cause of antibiotic resistant systemic infections. A. baumannii strains differ in their susceptibility to the membrane attack complex (MAC) formed from terminal complement pathway proteins, but the reasons for this variation remain poorly understood. We have characterized in detail the complement sensitivity phenotypes of nine A. baumannii clinical strains and some of the factors that might influence differences between strains. Using A. baumannii laboratory strains and flow cytometry assays, we first reconfirmed that both opsonization with the complement proteins C3b/iC3b and MAC formation were inhibited by the capsule. There were marked differences in C3b/iC3b and MAC binding between the nine clinical A. baumannii strains, but this variation was partially independent of capsule composition or size. Opsonization with C3b/iC3b improved neutrophil phagocytosis of most strains. Importantly, although C3b/iC3b binding and MAC formation on the bacterial surface correlated closely, MAC formation did not correlate with variations between A. baumannii strains in their levels of serum resistance. Genomic analysis identified only limited differences between strains in the distribution of genes required for serum resistance, but RNAseq data identified three complement-resistance genes that were differentially regulated between a MAC resistant and two MAC intermediate resistant strains when cultured in serum. These data demonstrate that clinical A. baumannii strains vary in their sensitivity to different aspects of the complement system, and that the serum resistance phenotype was influenced by factors in addition to the amount of MAC forming on the bacterial surface.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Complement Activation , Complement C3b/metabolism , Complement Membrane Attack Complex , Complement System Proteins , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL