Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 8(1): 17549, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30510272

ABSTRACT

In this study we compared fatty acid (FA) metabolism in myotubes established from athletic and sedentary young subjects. Six healthy sedentary (maximal oxygen uptake (VO2max) ≤ 46 ml/kg/min) and six healthy athletic (VO2max > 60 ml/kg/min) young men were included. Myoblasts were cultured and differentiated to myotubes from satellite cells isolated from biopsy of musculus vastus lateralis. FA metabolism was studied in myotubes using [14C]oleic acid. Lipid distribution was assessed by thin layer chromatography, and FA accumulation, lipolysis and re-esterification were measured by scintillation proximity assay. Gene and protein expressions were studied. Myotubes from athletic subjects showed lower FA accumulation, lower incorporation of FA into total lipids, triacylglycerol (TAG), diacylglycerol and cholesteryl ester, higher TAG-related lipolysis and re-esterification, and higher complete oxidation and incomplete ß-oxidation of FA compared to myotubes from sedentary subjects. mRNA expression of the mitochondrial electron transport chain complex III gene UQCRB was higher in cells from athletic compared to sedentary. Myotubes established from athletic subjects have higher lipid turnover and oxidation compared to myotubes from sedentary subjects. Our findings suggest that cultured myotubes retain some of the phenotypic traits of their donors.


Subject(s)
Athletes , Electron Transport Complex III/metabolism , Lipid Metabolism , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Adult , Cells, Cultured , Humans , Male , Muscle Fibers, Skeletal/cytology , Oxidation-Reduction , Oxygen Consumption
2.
Arch Physiol Biochem ; 124(2): 119-130, 2018 May.
Article in English | MEDLINE | ID: mdl-28862046

ABSTRACT

We hypothesised that skeletal muscles of healthy young people have a large variation in oxidative capacity and fibre-type composition, and aimed therefore to investigate glucose metabolism in biopsies and myotubes isolated from musculus vastus lateralis from healthy males with varying degrees of maximal oxygen uptake. Trained and intermediary trained subjects showed higher carbohydrate oxidation in vivo. Fibre-type distribution in biopsies and myotubes did not differ between groups. There was no correlation between fibre-type I expression in biopsies and myotubes. Myotubes from trained had higher deoxyglucose accumulation and fractional glucose oxidation (glucose oxidation relative to glucose uptake), and were also more sensitive to the suppressive action of acutely added oleic acid to the cells. Despite lack of correlation of fibre types between skeletal muscle biopsies and cultured cells, myotubes from trained subjects retained some of their phenotypes in vitro with respect to enhanced glucose metabolism and metabolic flexibility.


Subject(s)
Exercise , Glucose/metabolism , Healthy Lifestyle , Insulin Resistance , Muscle Fibers, Skeletal/metabolism , Patient Compliance , Sedentary Behavior , Adult , Biopsy , Carbon Radioisotopes , Cells, Cultured , Deoxyglucose/metabolism , Fatty Acids, Nonesterified/adverse effects , Gene Expression Regulation , Humans , Male , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Norway , Oleic Acid/adverse effects , Oxygen Consumption , Quadriceps Muscle , Young Adult
3.
Physiol Rep ; 5(5)2017 Mar.
Article in English | MEDLINE | ID: mdl-28270597

ABSTRACT

The hepatokine fetuin-A can together with free fatty acids (FFAs) enhance adipose tissue (AT) inflammation and insulin resistance via toll-like receptor 4 (TLR4). Although some of the health benefits of exercise can be explained by altered release of myokines from the skeletal muscle, it is not well documented if some of the beneficial effects of exercise can be explained by altered secretion of hepatokines. The aim of this study was to examine the effect of interaction between fetuin-A and FFAs on insulin sensitivity after physical exercise. In this study, 26 sedentary men who underwent 12 weeks of combined endurance and strength exercise were included. Insulin sensitivity was measured using euglycemic-hyperinsulinemic clamp, and AT insulin resistance was indicated by the product of fasting plasma concentration of FFAs and insulin. Blood samples and biopsies from skeletal muscle and subcutaneous AT were collected. Several phenotypic markers were measured, and mRNA sequencing was performed on the biopsies. AT macrophages were analyzed based on mRNA markers. The intervention improved hepatic parameters, reduced plasma fetuin-A concentration (~11%, P < 0.01), slightly changed FFAs concentration, and improved glucose infusion rate (GIR) (~33%, P < 0.01) across all participants. The change in circulating fetuin-A and FFAs interacted to predict some of the change in GIR (ß = -42.16, P = 0.030), AT insulin resistance (ß = 0.579, P = 0.003), gene expression related to TLR-signaling in AT and AT macrophage mRNA (ß = 94.10, P = 0.034) after exercise. We observed no interaction effects between FFAs concentrations and leptin and adiponectin on insulin sensitivity, or any interaction effects between Fetuin-A and FFAs concentrations on skeletal muscle TLR-signaling. The relationship between FFAs levels and insulin sensitivity seemed to be specific for fetuin-A and the AT Some of the beneficial effects of exercise on insulin sensitivity may be explained by changes in circulating fetuin-A and FFAs, promoting less TLR4 signaling in AT perhaps by modulating AT macrophages.


Subject(s)
Blood Glucose/metabolism , Exercise/physiology , Fatty Acids, Nonesterified/blood , Muscle, Skeletal/physiology , alpha-2-HS-Glycoprotein/metabolism , Adiponectin/blood , Glucose Clamp Technique , Humans , Insulin Resistance/physiology , Leptin/blood , Male , Middle Aged , Physical Endurance/physiology , Resistance Training , Toll-Like Receptor 4/metabolism
4.
PLoS One ; 12(4): e0175441, 2017.
Article in English | MEDLINE | ID: mdl-28403174

ABSTRACT

BACKGROUND AND AIMS: Physical activity has preventive as well as therapeutic benefits for overweight subjects. In this study we aimed to examine effects of in vivo exercise on in vitro metabolic adaptations by studying energy metabolism in cultured myotubes isolated from biopsies taken before and after 12 weeks of extensive endurance and strength training, from healthy sedentary normal weight and overweight men. METHODS: Healthy sedentary men, aged 40-62 years, with normal weight (body mass index (BMI) < 25 kg/m2) or overweight (BMI ≥ 25 kg/m2) were included. Fatty acid and glucose metabolism were studied in myotubes using [14C]oleic acid and [14C]glucose, respectively. Gene and protein expressions, as well as DNA methylation were measured for selected genes. RESULTS: The 12-week training intervention improved endurance, strength and insulin sensitivity in vivo, and reduced the participants' body weight. Biopsy-derived cultured human myotubes after exercise showed increased total cellular oleic acid uptake (30%), oxidation (46%) and lipid accumulation (34%), as well as increased fractional glucose oxidation (14%) compared to cultures established prior to exercise. Most of these exercise-induced increases were significant in the overweight group, whereas the normal weight group showed no change in oleic acid or glucose metabolism. CONCLUSIONS: 12 weeks of combined endurance and strength training promoted increased lipid and glucose metabolism in biopsy-derived cultured human myotubes, showing that training in vivo are able to induce changes in human myotubes that are discernible in vitro.


Subject(s)
Lipid Metabolism , Muscle Fibers, Skeletal/metabolism , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Cells, Cultured , DNA Methylation , Epigenesis, Genetic , Fatty Acids/metabolism , Glucose/metabolism , Humans , Insulin/physiology , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Male , Middle Aged , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/metabolism , Phosphorylation , Protein Processing, Post-Translational , Resistance Training , Transcriptome
5.
Physiol Rep ; 4(21)2016 11.
Article in English | MEDLINE | ID: mdl-27821717

ABSTRACT

Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue.


Subject(s)
Adipose Tissue/metabolism , Energy Metabolism/genetics , Exercise Therapy/methods , Exercise/physiology , Magnetic Resonance Imaging/methods , Obesity/metabolism , RNA, Messenger/metabolism , Adipose Tissue/immunology , Adipose Tissue/pathology , Body Weight , Energy Metabolism/physiology , Fatty Acids, Nonesterified/blood , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Insulin/metabolism , Insulin Resistance , Macrophages/immunology , Macrophages/metabolism , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Obesity/immunology , Overweight , Physical Endurance/physiology , Sedentary Behavior , T-Lymphocytes/metabolism
6.
Physiol Rep ; 2(11)2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25413318

ABSTRACT

Muscle lipid stores and insulin sensitivity have a recognized association although the mechanism remains unclear. We investigated how a 12-week supervised combined endurance and strength exercise intervention influenced muscle lipid stores in sedentary overweight dysglycemic subjects and normal weight control subjects (n = 18). Muscle lipid stores were measured by magnetic resonance spectroscopy (MRS), electron microscopy (EM) point counting, and direct EM lipid droplet measurements of subsarcolemmal (SS) and intramyofibrillar (IMF) regions, and indirectly, by deep sequencing and real-time PCR of mRNA of lipid droplet-associated proteins. Insulin sensitivity and VO2max increased significantly in both groups after 12 weeks of training. Muscle lipid stores were reduced according to MRS at baseline before and after the intervention, whereas EM point counting showed no change in LD stores post exercise, indicating a reduction in muscle adipocytes. Large-scale EM quantification of LD parameters of the subsarcolemmal LD population demonstrated reductions in LD density and LD diameters. Lipid droplet volume in the subsarcolemmal LD population was reduced by ~80%, in both groups, while IMF LD volume was unchanged. Interestingly, the lipid droplet diameter (n = 10 958) distribution was skewed, with a lack of small diameter lipid droplets (smaller than ~200 nm), both in the SS and IMF regions. Our results show that the SS LD lipid store was sensitive to training, whereas the dominant IMF LD lipid store was not. Thus, net muscle lipid stores can be an insufficient measure for the effects of training.

7.
Physiol Rep ; 2(8)2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25138789

ABSTRACT

Angiopoietin-like protein 4 (ANGPTL4) may regulate lipoprotein lipase-dependent plasma clearance of triacylglycerol from skeletal muscle during exercise. The aim of this study was to examine the importance of muscle in regulating ANGPTL4 in response to exercise. We sampled muscle biopsies and serum before, immediately after, and 2 h after 45 min of ergometer cycling. Sampling was done before and after a 12-week training intervention in controls and dysglycemic subjects. Moreover, fat biopsies were taken before and after the training intervention. The regulation of ANGPTL4 was also investigated in several tissues of exercising mice, and in cultured myotubes. ANGPTL4 levels in serum and expression in muscle were highest 2 h after exercise in both groups. Whereas ANGPTL4 was higher in muscle of exercising controls as compared to dysglycemic subjects, the opposite was observed in serum. In exercising mice, Angptl4 mRNA showed both higher basal expression and induction in liver compared to muscle. Angptl4 mRNA was much higher in adipose tissue than muscle and was also induced by exercise. We observed two mRNA isoforms of ANGPTL4 in muscle and fat in humans. Both were induced by exercise in muscle; one isoform was expressed 5- to 10-fold higher than the other. Studies in mice and cultured myotubes showed that both fatty acids and cortisol have the potential to increase ANGPTL4 expression in muscle during exercise. In conclusion, ANGPTL4 is markedly induced in muscle in response to exercise. However, liver and adipose tissue may contribute more than muscle to the exercise-induced increase in circulating ANGPTL4.

8.
Med Sci Sports Exerc ; 45(11): 2175-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23591294

ABSTRACT

PURPOSE: Caffeine (CAF) improves performance in both short- and long-duration running and cycling where performance relies on power output and endurance capacity of leg muscles. No studies have so far tested the effects of CAF while using the double-poling (DP) technique in cross-country skiing. When using the DP technique, arm muscles provide the speed-generating force and therefore play an important role in performance outcome. The metabolism of arm muscles differs from that of leg muscles. Thus, results from studies on leg muscles and CAF may not be directly applicable to exercises while using the DP technique in cross-country skiing. The purpose of our study was therefore to investigate the effects of CAF on exercise performance in DP. METHOD: Ten highly trained male cross-country skiers (V·O 2max running, 69.3 ± 1.0 mL · kg · min(-1)) performed a placebo (PLA) and CAF trial using a randomized, double-blind, crossover design. Performance was assessed by measuring the time to complete an 8-km cross-country DP performance test (C-PT). CAF (6 mg · kg(-1)) or PLA was ingested 75 min before the C-PT. RESULTS: CAF ingestion reduced the time to complete the 8-km C-PT from 34:26 ± 1:25 to 33:01 ± 1:24 min (P < 0.05). The subjects maintained higher speed and HR throughout the C-PT, and lactate was higher immediately after the C-PT with CAF exposure compared with PLA. Subjects reported lower RPE at submaximal intensities during CAF compared with PLA, although HR was similar. CONCLUSION: CAF intake enhances endurance performance in an 8-km C-PT, where arm muscles limit performance. CAF ingestion allowed the participants to exercise with a higher HR and work intensity possibly by reducing perception of effort or facilitating motor unit recruitment.


Subject(s)
Athletic Performance/physiology , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Physical Exertion/drug effects , Skiing/physiology , Adult , Arm , Blood Glucose/metabolism , Caffeine/blood , Central Nervous System Stimulants/blood , Cross-Over Studies , Double-Blind Method , Epinephrine/blood , Heart Rate/drug effects , Humans , Lactic Acid/blood , Male , Muscle, Skeletal , Norepinephrine/blood , Oxygen Consumption/drug effects , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL