Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Immunity ; 55(12): 2271-2284.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36384135

ABSTRACT

The NLRP3 inflammasome plays a central role in antimicrobial defense as well as in the context of sterile inflammatory conditions. NLRP3 activity is governed by two independent signals: the first signal primes NLRP3, rendering it responsive to the second signal, which then triggers inflammasome formation. Our understanding of how NLRP3 priming contributes to inflammasome activation remains limited. Here, we show that IKKß, a kinase activated during priming, induces recruitment of NLRP3 to phosphatidylinositol-4-phosphate (PI4P), a phospholipid enriched on the trans-Golgi network. NEK7, a mitotic spindle kinase that had previously been thought to be indispensable for NLRP3 activation, was redundant for inflammasome formation when IKKß recruited NLRP3 to PI4P. Studying iPSC-derived human macrophages revealed that the IKKß-mediated NEK7-independent pathway constitutes the predominant NLRP3 priming mechanism in human myeloid cells. Our results suggest that PI4P binding represents a primed state into which NLRP3 is brought by IKKß activity.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , I-kappa B Kinase , Inflammasomes/metabolism , Mice, Inbred C57BL , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , trans-Golgi Network/metabolism
2.
Nature ; 609(7927): 590-596, 2022 09.
Article in English | MEDLINE | ID: mdl-36002575

ABSTRACT

Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1-3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP-but not unmodified MDP-constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Nod2 Signaling Adaptor Protein , Phosphotransferases (Alcohol Group Acceptor) , Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Bacteria/chemistry , Bacteria/immunology , Cell Wall/chemistry , Hexosamines/biosynthesis , Immunity, Innate , Macrophages/enzymology , Macrophages/immunology , Mice , Nod2 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/metabolism , Peptidoglycan/chemistry , Peptidoglycan/immunology , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
3.
Nature ; 587(7835): 678-682, 2020 11.
Article in English | MEDLINE | ID: mdl-32911480

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is an innate immune sensor for cytosolic microbial DNA1. After binding DNA, cGAS synthesizes the messenger 2'3'-cyclic GMP-AMP (cGAMP)2-4, which triggers cell-autonomous defence and the production of type I interferons and pro-inflammatory cytokines via the activation of STING5. In addition to responding to cytosolic microbial DNA, cGAS also recognizes mislocalized cytosolic self-DNA and has been implicated in autoimmunity and sterile inflammation6,7. Specificity towards pathogen- or damage-associated DNA was thought to be caused by cytosolic confinement. However, recent findings place cGAS robustly in the nucleus8-10, where tight tethering of chromatin is important to prevent autoreactivity to self-DNA8. Here we show how cGAS is sequestered and inhibited by chromatin. We provide a cryo-electron microscopy structure of the cGAS catalytic domain bound to a nucleosome, which shows that cGAS does not interact with the nucleosomal DNA, but instead interacts with histone 2A-histone 2B, and is tightly anchored to the 'acidic patch'. The interaction buries the cGAS DNA-binding site B, and blocks the formation of active cGAS dimers. The acidic patch robustly outcompetes agonistic DNA for binding to cGAS, which suggests that nucleosome sequestration can efficiently inhibit cGAS, even when accessible DNA is nearby, such as in actively transcribed genomic regions. Our results show how nuclear cGAS is sequestered by chromatin and provides a mechanism for preventing autoreactivity to nuclear self-DNA.


Subject(s)
Catalytic Domain , Chromatin/chemistry , Chromatin/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/chemistry , Amino Acid Sequence , Animals , Autoantigens/chemistry , Autoantigens/immunology , Autoantigens/metabolism , Autoantigens/ultrastructure , Binding Sites , Binding, Competitive , Chromatin/genetics , Chromatin/ultrastructure , Cryoelectron Microscopy , DNA/chemistry , DNA/immunology , DNA/metabolism , DNA/ultrastructure , Enzyme Activation , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Humans , Hydrophobic and Hydrophilic Interactions , Immunity, Innate , Mice , Models, Molecular , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/ultrastructure , Protein Multimerization , THP-1 Cells
4.
EMBO J ; 40(23): e103718, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34698396

ABSTRACT

Mixed lineage kinase domain-like (MLKL) is the executioner in the caspase-independent form of programmed cell death called necroptosis. Receptor-interacting serine/threonine protein kinase 3 (RIPK3) phosphorylates MLKL, triggering MLKL oligomerization, membrane translocation and membrane disruption. MLKL also undergoes ubiquitylation during necroptosis, yet neither the mechanism nor the significance of this event has been demonstrated. Here, we show that necroptosis-specific multi-mono-ubiquitylation of MLKL occurs following its activation and oligomerization. Ubiquitylated MLKL accumulates in a digitonin-insoluble cell fraction comprising organellar and plasma membranes and protein aggregates. Appearance of this ubiquitylated MLKL form can be reduced by expression of a plasma membrane-located deubiquitylating enzyme. Oligomerization-induced MLKL ubiquitylation occurs on at least four separate lysine residues and correlates with its proteasome- and lysosome-dependent turnover. Using a MLKL-DUB fusion strategy, we show that constitutive removal of ubiquitin from MLKL licences MLKL auto-activation independent of necroptosis signalling in mouse and human cells. Therefore, in addition to the role of ubiquitylation in the kinetic regulation of MLKL-induced death following an exogenous necroptotic stimulus, it also contributes to restraining basal levels of activated MLKL to avoid unwanted cell death.


Subject(s)
Cell Membrane/metabolism , Necroptosis , Protein Kinases/metabolism , Protein Kinases/physiology , Protein Multimerization , Ubiquitin Thiolesterase/metabolism , Ubiquitination , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Proteasome Endopeptidase Complex , Protein Kinases/chemistry , Protein Kinases/genetics , Ubiquitin Thiolesterase/genetics
5.
EMBO J ; 38(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30573668

ABSTRACT

The E3 ubiquitin ligase Parkin is a key effector of the removal of damaged mitochondria by mitophagy. Parkin determines cell fate in response to mitochondrial damage, with its loss promoting early onset Parkinson's disease and potentially also cancer progression. Controlling a cell's apoptotic response is essential to co-ordinate the removal of damaged mitochondria. We report that following mitochondrial damage-induced mitophagy, Parkin directly ubiquitinates the apoptotic effector protein BAK at a conserved lysine in its hydrophobic groove, a region that is crucial for BAK activation by BH3-only proteins and its homo-dimerisation during apoptosis. Ubiquitination inhibited BAK activity by impairing its activation and the formation of lethal BAK oligomers. Parkin also suppresses BAX-mediated apoptosis, but in the absence of BAX ubiquitination suggesting an indirect mechanism. In addition, we find that BAK-dependent mitochondrial outer membrane permeabilisation during apoptosis promotes PINK1-dependent Parkin activation. Hence, we propose that Parkin directly inhibits BAK to suppress errant apoptosis, thereby allowing the effective clearance of damaged mitochondria, but also promotes clearance of apoptotic mitochondria to limit their potential pro-inflammatory effect.


Subject(s)
Mitochondria/physiology , Ubiquitin-Protein Ligases/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis , Cell Line , HEK293 Cells , HeLa Cells , Humans , Lysine/metabolism , Mice , Mitophagy , Ubiquitination , bcl-2 Homologous Antagonist-Killer Protein/chemistry
6.
EMBO Rep ; 21(11): e50400, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32954645

ABSTRACT

Signaling via the intracellular pathogen receptors nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2 requires receptor interacting kinase 2 (RIPK2), an adaptor kinase that can be targeted for the treatment of various inflammatory diseases. However, the molecular mechanisms of how RIPK2 contributes to NOD signaling are not completely understood. We generated FLAG-tagged RIPK2 knock-in mice using CRISPR/Cas9 technology to study NOD signaling mechanisms at the endogenous level. Using cells from these mice, we were able to generate a detailed map of post-translational modifications on RIPK2. Similar to other reports, we did not detect ubiquitination of RIPK2 lysine 209 during NOD2 signaling. However, using site-directed mutagenesis we identified a new regulatory region on RIPK2, which dictates the crucial interaction with the E3 ligase XIAP and downstream signaling outcomes.


Subject(s)
Nod2 Signaling Adaptor Protein , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Animals , Mice , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Regulatory Sequences, Nucleic Acid , Signal Transduction , Ubiquitination
7.
Nat Commun ; 12(1): 6053, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663829

ABSTRACT

Tumor necrosis factor (TNF) is one of the few cytokines successfully targeted by therapies against inflammatory diseases. However, blocking this well studied and pleiotropic ligand can cause dramatic side-effects. Here, we reason that a systems-level proteomic analysis of TNF signaling could dissect its diverse functions and offer a base for developing more targeted therapies. Therefore, we combine phosphoproteomics time course experiments with subcellular localization and kinase inhibitor analysis to identify functional modules of protein phosphorylation. The majority of regulated phosphorylation events can be assigned to an upstream kinase by inhibiting master kinases. Spatial proteomics reveals phosphorylation-dependent translocations of hundreds of proteins upon TNF stimulation. Phosphoproteome analysis of TNF-induced apoptosis and necroptosis uncovers a key role for transcriptional cyclin-dependent kinase activity to promote cytokine production and prevent excessive cell death downstream of the TNF signaling receptor. This resource of TNF-induced pathways and sites can be explored at http://tnfviewer.biochem.mpg.de/ .


Subject(s)
Cyclin-Dependent Kinases/metabolism , Proteome/metabolism , Signal Transduction , A549 Cells , Apoptosis , Cell Death , Cell Line , Cytokines/metabolism , Humans , Necroptosis , Phosphorylation , Tumor Necrosis Factor-alpha/metabolism , U937 Cells
8.
Cell Rep ; 30(4): 1260-1270.e5, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31995763

ABSTRACT

The inflammatory functions of the cytokine tumor necrosis factor (TNF) rely on its ability to induce cytokine production and to induce cell death. Caspase-dependent and caspase-independent pathways-apoptosis and necroptosis, respectively-regulate immunogenicity by the release of distinct sets of cellular proteins. To obtain an unbiased, systems-level understanding of this important process, we here applied mass spectrometry-based proteomics to dissect protein release during apoptosis and necroptosis. We report hundreds of proteins released from human myeloid cells in time course experiments. Both cell death types induce receptor shedding, but only apoptotic cells released nucleosome components. Conversely, necroptotic cells release lysosomal components by activating lysosomal exocytosis at early stages of necroptosis-induced membrane permeabilization and show reduced release of conventionally secreted cytokines.


Subject(s)
Apoptosis , Caspase 8/metabolism , Cytokines/metabolism , Necroptosis , Pentanoic Acids/pharmacology , Proteome/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Apoptosis/drug effects , Caspase Inhibitors/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Chemokine CCL2/metabolism , Chemokine CCL24/metabolism , Dipeptides/pharmacology , Exocytosis/drug effects , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , HEK293 Cells , Histones/metabolism , Humans , Indoles/pharmacology , Interleukin-8/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Mass Spectrometry , Necroptosis/drug effects
9.
Front Cell Dev Biol ; 7: 208, 2019.
Article in English | MEDLINE | ID: mdl-31632962

ABSTRACT

Innate immune signaling and programmed cell death are intimately linked, and many signaling pathways can regulate and induce both, transcription of inflammatory mediators or autonomous cell death. The best-characterized examples for these dual outcomes are members of the TNF superfamily, the inflammasome receptors, and the toll-like receptors. Signaling via the intracellular peptidoglycan receptors NOD1 and NOD2, however, does not appear to follow this trend, despite involving signaling proteins, or proteins with domains that are linked to programmed cell death, such as RIP kinases, inhibitors of apoptosis (IAP) proteins or the CARD domains on NOD1/2. To better understand the connections between NOD signaling and cell death induction, we here review the latest findings on the molecular regulation of signaling downstream of the NOD receptors and explore the links between this immune signaling pathway and the regulation of cell death.

10.
Cell Rep ; 22(6): 1496-1508, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29425505

ABSTRACT

Inhibitors of apoptosis (IAPs) proteins are critical regulators of innate immune signaling pathways and therefore have potential as drug targets. X-linked IAP (XIAP) and cellular IAP1 and IAP2 (cIAP1 and cIAP2) are E3 ligases that have been shown to be required for signaling downstream of NOD2, an intracellular receptor for bacterial peptidoglycan. We used genetic and biochemical approaches to compare the responses of IAP-deficient mice and cells to NOD2 stimulation. In all cell types tested, XIAP is the only IAP required for signaling immediately downstream of NOD2, while cIAP1 and cIAP2 are dispensable for NOD2-induced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. However, mice lacking cIAP1 or TNFR1 have a blunted cytokine response to NOD2 stimulation. We conclude that cIAPs regulate NOD2-dependent autocrine TNF signaling in vivo and highlight the importance of physiological context in the interplay of innate immune signaling pathways.


Subject(s)
Bacterial Infections/immunology , Immunity, Innate/immunology , Inhibitor of Apoptosis Proteins/immunology , Signal Transduction/immunology , Animals , Bacterial Proteins/immunology , Gene Knockout Techniques , Mice , Nod2 Signaling Adaptor Protein , Peptidoglycan/immunology
11.
Nat Commun ; 6: 6442, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25778803

ABSTRACT

Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase 2 (RIPK2) is critical for NOD-mediated NF-κB activation and cytokine production. Here we develop and characterize a selective RIPK2 kinase inhibitor, WEHI-345, which delays RIPK2 ubiquitylation and NF-κB activation downstream of NOD engagement. Despite only delaying NF-κB activation on NOD stimulation, WEHI-345 prevents cytokine production in vitro and in vivo and ameliorates experimental autoimmune encephalomyelitis in mice. Our study highlights the importance of the kinase activity of RIPK2 for proper immune responses and demonstrates the therapeutic potential of inhibiting RIPK2 in NOD-driven inflammatory diseases.


Subject(s)
Cytokines/metabolism , Inflammation/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/chemistry , Animals , Chromatography, Liquid , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Humans , Immune System , Inhibitory Concentration 50 , Interferon-gamma/metabolism , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , NF-kappa B/metabolism , Protein Binding , Protein Conformation , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Recombinant Proteins/metabolism , Signal Transduction , Tandem Mass Spectrometry , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL