Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Publication year range
1.
Phys Rev Lett ; 117(9): 093902, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27610855

ABSTRACT

We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

2.
Opt Express ; 22(24): 29778-86, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25606907

ABSTRACT

High order harmonic generation (HHG) has shown its impact on several applications in Attosecond Science and Atomic and Molecular Physics. Owing to the complexity of the experimental setup for the generation and characterization of harmonics, as well as to the large computational costs of numerical modelling, HHG is generally performed and modelled in collinear geometry. Recently, several experiments have been performed exploiting non-collinear geometry, such as HHG in a grating of excited molecules created by crossing beams. In such studies, harmonics were observed at propagation directions different from those of the driving pulses; moreover the scattered harmonics were angularly dispersed.In this work we report on a new regime of HHG driven by multiple beams, where the harmonics are generated by three synchronized, intense laser pulses organized in a non-planar geometry. Although the configuration we explore is well within the strong-field regime, the scattered harmonics we observe are not angularly dispersed.


Subject(s)
Lasers , Models, Theoretical , Computer Simulation , Nonlinear Dynamics , Numerical Analysis, Computer-Assisted , Spectrum Analysis
3.
Appl Opt ; 53(26): 5879-88, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25321666

ABSTRACT

We present the design and characterization of a double-configuration grating monochromator for the spectral selection of extreme-ultraviolet ultrafast pulses. Two grating geometries are joined in an instrument with two interchangeable diffracting stages, both used at grazing incidence: one with the gratings in the off-plane mount (OPM), the other in the classical diffraction mount (CDM). The use of two stages gives great flexibility: the OPM stage is used for sub-50 fs time response and low spectral resolution, while the CDM stage is for 100-200 fs time response and high spectral resolution. The monochromator spectral and temporal performances have been experimentally demonstrated on a high-order laser-harmonics beam line.

4.
Phys Chem Chem Phys ; 15(23): 9384-91, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23660801

ABSTRACT

The dynamics of excited states in α,ω-dinaphthylpolyyne, a class of linear sp-carbon chains, has been investigated by ultrafast transient absorption spectroscopy and DFT//TDDFT calculations. We show that the role of molecular conformers, in which end-capped naphthalene rings are planar or perpendicular to the polyyne plane, is fundamental for understanding both the steady state properties, such as UV-Vis absorption spectra and vibronic transitions, and the ultrafast transient absorption features. In particular, we observed in one of the conformers the ultrafast formation of a narrow photo-induced absorption band rising within 30 ps. This band can be assigned to an inter-system crossing event leading to the formation of triplet excited states.

5.
Opt Lett ; 35(9): 1350-2, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20436565

ABSTRACT

We investigated theoretically and experimentally the ultrafast birefringence induced by impulsive alignment in a molecular gas during optical filamentation. This phenomenon is able to substantially affect the polarization state of an ultrashort laser pulse that propagates through the aligned medium at suitable delays from a first aligning pulse. We exploited this modulation of the polarization state in order to effectively control the high-order harmonic generation (HHG) process, which is strongly dependent on the driving pulse polarization. These results open new and fascinating perspectives for the tailoring of strong-field phenomena by means of polarization pulse shaping.

6.
Opt Lett ; 34(20): 3125-7, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19838247

ABSTRACT

A temporal gating on the high-order harmonic emission process is achieved using an intense 20 fs, 1.45 microm pulse (IR) in combination with an intense 13 fs, 800 nm pulse [visible (VIS)]. Exploiting this two-color gating scheme, a coherent continuous emission extending up to 160 eV using Ar gas and 200 eV using Ne gas is efficiently generated. The IR pulse contributes to significantly extending the harmonic emission to higher photon energies, whereas the VIS pulse improves the conversion efficiency of the process. These results indicate the possibility to produce bright attosecond pulses approaching the soft X spectral region.

7.
Opt Express ; 14(21): 10109-16, 2006 Oct 16.
Article in English | MEDLINE | ID: mdl-19529406

ABSTRACT

We report on a source of ultrabroadband self-phase-stabilized near-IR pulses by difference-frequency generation of a hollow-fiber broadened supercontinuum followed by two-stage optical parametric amplification. We demonstrate energies up to 200 microJ with 15 fs pulse width, making this source suited as a driver for attosecond pulse generation.

8.
Phys Rev Lett ; 85(12): 2494-7, 2000 Sep 18.
Article in English | MEDLINE | ID: mdl-10978090

ABSTRACT

Harmonic radiation generated in a neon gas jet by sub-10-fs laser pulses was investigated both experimentally and theoretically. The spectral profile of the harmonics with respect to the order, their intensity and relative spectral shifts were measured as a function of the position of the gas jet. The results point out spectral features typical of the quasi-single-cycle excitation regime. A nonadiabatic three-dimensional numerical model was developed, which provides harmonic spectra in remarkable agreement with the experiments.

9.
Faraday Discuss ; 171: 133-43, 2014.
Article in English | MEDLINE | ID: mdl-25415258

ABSTRACT

High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution of the order of an angstrom. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such a technique to nitrous oxide (N(2)O) and acetylene (C(2)H(2)). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.

10.
Rev Sci Instrum ; 85(10): 103112, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25362376

ABSTRACT

A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25-800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

11.
Opt Lett ; 33(24): 2922-4, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-19079493

ABSTRACT

The rotovibrational dynamics excited by optical filamentation in molecular gases is studied in the temporal domain. Two time-delayed replicas of the same laser pulse have been used to generate a first filament, for the rotovibrational excitation of the sample, and a second collinear filament probing the Raman dynamics. The Fermi doublet structure in CO(2) as well as the very fast stretching mode of H(2) were clearly resolved.

12.
Phys Rev Lett ; 100(12): 123006, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18517863

ABSTRACT

The spatiotemporal effects generated in the wake of a laser filament propagating in nitrogen are investigated. At suitable time delays, a probe light pulse propagating along the wake experiences a strong spatial confinement and a noticeable spectral broadening at the same time. Numerical simulations, well reproducing the experimental findings, show the key role of the impulsive rotational Raman response in the observed phenomena.

13.
Opt Lett ; 32(20): 2957-9, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17938665

ABSTRACT

Ultrabroadband self-phase-stabilized near-IR pulses have been generated by difference-frequency generation of a filament broadened supercontinuum followed by two-stage optical parametric amplification. Pulses with energy up to 1.2 mJ and duration down to 17 fs are demonstrated. These characteristics make such a source suited as a driver for high-order harmonic generation and isolated attosecond pulse production.

14.
Opt Lett ; 32(17): 2593-5, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17767316

ABSTRACT

Elemental sensitivity in soft x-ray imaging of thin foils with known thickness is observed using an ultrafast laser-plasma source and a LiF crystal as detector. Measurements are well reproduced by a simple theoretical model. This technique can be exploited for high spatial resolution, wide field of view imaging in the soft x-ray region, and it is suitable for the characterization of thin objects with thicknesses ranging from hundreds down to tens of nanometers.

15.
Opt Lett ; 31(7): 963-5, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16602187

ABSTRACT

We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

16.
Science ; 314(5798): 443-6, 2006 Oct 20.
Article in English | MEDLINE | ID: mdl-17053142

ABSTRACT

We generated single-cycle isolated attosecond pulses around approximately 36 electron volts using phase-stabilized 5-femtosecond driving pulses with a modulated polarization state. Using a complete temporal characterization technique, we demonstrated the compression of the generated pulses for as low as 130 attoseconds, corresponding to less than 1.2 optical cycles. Numerical simulations of the generation process show that the carrier-envelope phase of the attosecond pulses is stable. The availability of single-cycle isolated attosecond pulses opens the way to a new regime in ultrafast physics, in which the strong-field electron dynamics in atoms and molecules is driven by the electric field of the attosecond pulses rather than by their intensity profile.

17.
Phys Rev Lett ; 94(19): 193903, 2005 May 20.
Article in English | MEDLINE | ID: mdl-16090174

ABSTRACT

By using a self-referencing technique, we have experimentally measured the influence of the carrier-envelope phase of femtosecond light pulses on the phase of the electric field of the radiation produced by high-order harmonic generation. We show that, in particular experimental conditions, the temporal evolution of the electric field of the attosecond pulses, is directly controlled by the carrier-envelope phase of the driving pulses.

18.
Phys Rev Lett ; 95(15): 153902, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16241726

ABSTRACT

We experimentally investigate the process of intramolecular quantum interference in high-order harmonic generation in impulsively aligned CO2 molecules. The recombination interference effect is clearly seen through the order dependence of the harmonic yield in an aligned sample. The experimental results can be well modeled assuming that the effective de Broglie wavelength of the returning electron wave is not significantly altered by the Coulomb field of the molecular ion. We demonstrate that such interference effects can be effectively controlled by changing the ellipticity of the driving laser field.

19.
Opt Lett ; 23(16): 1283-5, 1998 Aug 15.
Article in English | MEDLINE | ID: mdl-18087499

ABSTRACT

Pulses with 180-THz bandwidth and 2-microJ energy were generated by a noncollinear optical parametric amplifier in the visible, pumped by the second harmonic of a Ti:sapphire laser. A portion of the amplified pulse spectrum was compressed to 7.2 fs by use of a thin prism sequence.

20.
Opt Lett ; 23(8): 630-2, 1998 Apr 15.
Article in English | MEDLINE | ID: mdl-18084599

ABSTRACT

High-energy light pulses that are tunable from 1.1 to 2.6 mum, with a duration as short as 14.5 fs were generated in a type II phase-matching beta-BaB(2)O(4) traveling-wave parametric converter pumped by 18-fs pulses obtained from a Ti:sapphire laser with chirped-pulse amplification, followed by a hollow-fiber compressor.

SELECTION OF CITATIONS
SEARCH DETAIL