Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Publication year range
2.
Cell ; 158(2): 300-313, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25036630

ABSTRACT

Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:


Subject(s)
Gastrointestinal Motility , Gastrointestinal Tract/cytology , Gastrointestinal Tract/microbiology , Macrophages/metabolism , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Gastrointestinal Tract/innervation , Gastrointestinal Tract/physiology , In Vitro Techniques , Macrophage Colony-Stimulating Factor , Mice , Neurons/metabolism , Peristalsis , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction
3.
Semin Immunol ; 54: 101511, 2021 04.
Article in English | MEDLINE | ID: mdl-34743926

ABSTRACT

Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.


Subject(s)
Colony-Stimulating Factors , Granulocyte Colony-Stimulating Factor , Animals , Colony-Stimulating Factors/physiology , Hematopoiesis , Humans , Macrophages , Mice , Microglia
5.
Glia ; 71(11): 2664-2678, 2023 11.
Article in English | MEDLINE | ID: mdl-37519044

ABSTRACT

Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.


Subject(s)
Leukoencephalopathies , Receptor, Macrophage Colony-Stimulating Factor , Mice , Animals , Prednisone/pharmacology , Proteomics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Leukoencephalopathies/genetics , Leukoencephalopathies/prevention & control , Microglia , Receptor Protein-Tyrosine Kinases , Immunosuppression Therapy
6.
Glia ; 71(3): 775-794, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36433736

ABSTRACT

Colony stimulating factor (CSF) receptor-1 (CSF-1R)-related leukoencephalopathy (CRL) is an adult-onset, demyelinating and neurodegenerative disease caused by autosomal dominant mutations in CSF1R, modeled by the Csf1r+/- mouse. The expression of Csf2, encoding granulocyte-macrophage CSF (GM-CSF) and of Csf3, encoding granulocyte CSF (G-CSF), are elevated in both mouse and human CRL brains. While monoallelic targeting of Csf2 has been shown to attenuate many behavioral and histological deficits of Csf1r+/- mice, including cognitive dysfunction and demyelination, the contribution of Csf3 has not been explored. In the present study, we investigate the behavioral, electrophysiological and histopathological phenotypes of Csf1r+/- mice following monoallelic targeting of Csf3. We show that Csf3 heterozygosity normalized the Csf3 levels in Csf1r+/- mouse brains and ameliorated anxiety-like behavior, motor coordination and social interaction deficits, but not the cognitive impairment of Csf1r+/- mice. Csf3 heterozygosity failed to prevent callosal demyelination. However, consistent with its effects on behavior, Csf3 heterozygosity normalized microglial morphology in the cerebellum and in the ventral, but not in the dorsal hippocampus. Csf1r+/- mice exhibited altered firing activity in the deep cerebellar nuclei (DCN) associated with increased engulfment of glutamatergic synapses by DCN microglia and increased deposition of the complement factor C1q on glutamatergic synapses. These phenotypes were significantly ameliorated by monoallelic deletion of Csf3. Our current and earlier findings indicate that G-CSF and GM-CSF play largely non-overlapping roles in CRL-like disease development in Csf1r+/- mice.


Subject(s)
Demyelinating Diseases , Neurodegenerative Diseases , Humans , Adult , Mice , Animals , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Anxiety/genetics , Granulocyte Colony-Stimulating Factor/metabolism , Cerebellum/metabolism
7.
Cell Mol Life Sci ; 79(4): 219, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366105

ABSTRACT

Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Alzheimer Disease/drug therapy , Animals , Colony-Stimulating Factors/pharmacology , Colony-Stimulating Factors/therapeutic use , Microglia/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy
8.
Neurol Neurochir Pol ; 57(5): 444-449, 2023.
Article in English | MEDLINE | ID: mdl-37889001

ABSTRACT

We recently found that glucocorticosteroids (GCs) have protective effects in CSF1R mutation carriers against developing symptomatic CSF1R-related leukoencephalopathy. Our findings were subsequently confirmed in a mouse model study. We have received many questions from patients, their families, patient organisations, and healthcare practitioners about the optimal type of GCs, the dose, the route of administration, and application timing. This paper attempts to answer the most urgent of these questions based on our previous studies and personal observations. Despite the promising observations, more research on larger patient groups is needed to elucidate the beneficial actions of GCs in CSF1R mutation carriers.


Subject(s)
Leukoencephalopathies , Animals , Humans , Mice , Leukoencephalopathies/genetics , Mutation
9.
Immunity ; 38(4): 792-804, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23601688

ABSTRACT

Despite accumulating evidence suggesting local self-maintenance of tissue macrophages in the steady state, the dogma remains that tissue macrophages derive from monocytes. Using parabiosis and fate-mapping approaches, we confirmed that monocytes do not show significant contribution to tissue macrophages in the steady state. Similarly, we found that after depletion of lung macrophages, the majority of repopulation occurred by stochastic cellular proliferation in situ in a macrophage colony-stimulating factor (M-Csf)- and granulocyte macrophage (GM)-CSF-dependent manner but independently of interleukin-4. We also found that after bone marrow transplantation, host macrophages retained the capacity to expand when the development of donor macrophages was compromised. Expansion of host macrophages was functional and prevented the development of alveolar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors. Collectively, these results indicate that tissue-resident macrophages and circulating monocytes should be classified as mononuclear phagocyte lineages that are independently maintained in the steady state.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung/immunology , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Adult , Animals , Bone Marrow Transplantation , Cell Proliferation , Cell Survival , Cells, Cultured , Homeostasis , Humans , Interleukin-4/metabolism , Macrophages/transplantation , Mice , Mice, Knockout , Mice, Mutant Strains , Parabiosis , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
10.
Immunity ; 38(5): 970-83, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706669

ABSTRACT

Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.


Subject(s)
Aspergillus fumigatus/immunology , Dendritic Cells/metabolism , Interferon Regulatory Factors/metabolism , Interleukin-17/metabolism , Th17 Cells/metabolism , Animals , CD11b Antigen/metabolism , CD24 Antigen/metabolism , Cell Differentiation/immunology , Dendritic Cells/immunology , Humans , Interleukin-17/biosynthesis , Interleukin-23/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Macrophages/metabolism , Mice , Receptors, IgG/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/immunology , fms-Like Tyrosine Kinase 3/metabolism
12.
Glia ; 69(3): 779-791, 2021 03.
Article in English | MEDLINE | ID: mdl-33079443

ABSTRACT

Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a dementia resulting from dominantly inherited CSF1R inactivating mutations. The Csf1r+/- mouse mimics ALSP symptoms and pathology. Csf1r is mainly expressed in microglia, but also in cortical layer V neurons that are gradually lost in Csf1r+/- mice with age. We therefore examined whether microglial or neuronal Csf1r loss caused neurodegeneration in Csf1r+/- mice. The behavioral deficits, pathologies and elevation of Csf2 expression contributing to disease, previously described in the Csf1r+/- ALSP mouse, were reproduced by microglial deletion (MCsf1rhet mice), but not by neural deletion. Furthermore, increased Csf2 expression by callosal astrocytes, oligodendrocytes, and microglia was observed in Csf1r+/- mice and, in MCsf1rhet mice, the densities of these three cell types were increased in supraventricular patches displaying activated microglia, an early site of disease pathology. These data confirm that ALSP is a primary microgliopathy and inform future therapeutic and experimental approaches.


Subject(s)
Demyelinating Diseases , Leukoencephalopathies , Neurodegenerative Diseases , Animals , Leukoencephalopathies/genetics , Mice , Microglia , Neuroglia , Receptor Protein-Tyrosine Kinases , Receptors, Colony-Stimulating Factor , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
13.
Blood ; 129(12): 1691-1701, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28159742

ABSTRACT

Controlled regulation of lineage decisions is imperative for hematopoiesis. Yet, the molecular mechanisms underlying hematopoietic lineage choices are poorly defined. Colony-stimulating factor 1 (CSF-1), the cytokine acting as the principal regulator of monocyte/macrophage (M) development, has been shown to be able to instruct the lineage choice of uncommitted granulocyte M (GM) progenitors toward an M fate. However, the intracellular signaling pathways involved are unknown. CSF-1 activates a multitude of signaling pathways resulting in a pleiotropic cellular response. The precise role of individual pathways within this complex and redundant signaling network is dependent on cellular context, and is not well understood. Here, we address which CSF-1-activated pathways are involved in transmitting the lineage-instructive signal in primary bone marrow-derived GM progenitors. Although its loss is compensated for by alternative signaling activation mechanisms, Src family kinase (SFK) signaling is sufficient to transmit the CSF-1 lineage instructive signal. Moreover, c-Src activity is sufficient to drive M fate, even in nonmyeloid cells.


Subject(s)
Cell Lineage , Macrophage Colony-Stimulating Factor/physiology , Monocytes/cytology , Signal Transduction , src-Family Kinases/metabolism , Animals , Cells, Cultured , Granulocyte Precursor Cells/cytology , Hematopoiesis , Mice
14.
Nature ; 497(7448): 239-43, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23575636

ABSTRACT

Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival, expansion and differentiation of lineage-committed progenitors, but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction, the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors, leaving cytokines to ensure survival and proliferation of the progeny cells. Here we show that macrophage colony-stimulating factor (M-CSF, also called CSF1), a myeloid cytokine released during infection and inflammation, can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs, independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1(+) cells with myeloid gene signature and differentiation potential. In vivo, high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate.


Subject(s)
Cell Differentiation/drug effects , Cell Lineage/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Macrophage Colony-Stimulating Factor/pharmacology , Myeloid Cells/cytology , Myeloid Cells/drug effects , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Single-Cell Analysis , Trans-Activators/biosynthesis , Trans-Activators/genetics , Trans-Activators/metabolism
15.
Immunity ; 31(3): 513-25, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19733489

ABSTRACT

CX(3)CR1(+) and CD103(+) dendritic cells (DCs) in intestinal lamina propria play a key role in mucosal immunity. However, the origin and the developmental pathways that regulate their differentiation in the lamina propria remain unclear. We showed that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands. In contrast, common DC progenitors (CDP) and pre-DCs, which give rise to lymphoid organ DCs but not to monocytes, differentiated exclusively into CD103(+)CX(3)CR1(-) lamina propria DCs under the control of Flt3 and granulocyte-macrophage-colony-stimulating factor receptor (GM-CSFR) ligands. CD103(+)CX(3)CR1(-) DCs but not CD103(-)CX(3)CR1(+) DCs in the lamina propria constitutively expressed CCR7 and were the first DCs to transport pathogenic Salmonella from the intestinal tract to the mesenteric lymph nodes. Altogether, these results underline the diverse origin of the lamina propria DC network and identify mucosal DCs that arise from pre-DCs as key sentinels of the gut immune system.


Subject(s)
Cell Lineage , Dendritic Cells/cytology , Dendritic Cells/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Animals , Antigens, CD/immunology , CX3C Chemokine Receptor 1 , Cell Differentiation , Cell Movement , Integrin alpha Chains/immunology , Lymph Nodes/immunology , Mice , Mice, Knockout , Phenotype , Receptor, Macrophage Colony-Stimulating Factor/immunology , Receptors, Chemokine/immunology , Salmonella/immunology , Salmonella/pathogenicity , fms-Like Tyrosine Kinase 3/deficiency , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/immunology
16.
J Neurosci ; 36(6): 1890-901, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26865613

ABSTRACT

Previous studies in myelin-mutant mouse models of the inherited and incurable nerve disorder, Charcot-Marie-Tooth (CMT) neuropathy, have demonstrated that low-grade secondary inflammation implicating phagocytosing macrophages amplifies demyelination, Schwann cell dedifferentiation and perturbation of axons. The cytokine colony stimulating factor-1 (CSF-1) acts as an important regulator of these macrophage-related disease mechanisms, as genetic and pharmacologic approaches to block the CSF-1/CSF-1R signaling result in a significant alleviation of pathological alterations in mutant peripheral nerves. In mouse models of CMT1A and CMT1X, as well as in human biopsies, CSF-1 is predominantly expressed by endoneurial fibroblasts, which are closely associated with macrophages, suggesting local stimulatory mechanisms. Here we investigated the impact of cell-surface and secreted isoforms of CSF-1 on macrophage-related disease in connexin32-deficient (Cx32def) mice, a mouse model of CMT1X. Our present observations suggest that the secreted proteoglycan isoform (spCSF-1) is predominantly expressed by fibroblasts, whereas the membrane-spanning cell-surface isoform (csCSF-1) is expressed by macrophages. Using crossbreeding approaches to selectively restore or overexpress distinct isoforms in CSF-1-deficient (osteopetrotic) Cx32def mice, we demonstrate that both isoforms equally regulate macrophage numbers dose-dependently. However, spCSF-1 mediates macrophage activation and macrophage-related neural damage, whereas csCSF-1 inhibits macrophage activation and attenuates neuropathy. These results further corroborate the important role of secondary inflammation in mouse models of CMT1 and might identify specific targets for therapeutic approaches to modulate innate immune reactions. SIGNIFICANCE STATEMENT: Mouse models of Charcot-Marie-Tooth neuropathy have indicated that low-grade secondary inflammation involving phagocytosing macrophages amplifies demyelination, Schwann cell dedifferentiation, and perturbation of axons. The recruitment and pathogenic activation of detrimental macrophages is regulated by CSF-1, a cytokine that is mostly expressed by fibroblasts in the diseased nerve and exists in three isoforms. We show that the cell-surface and secreted isoforms of CSF-1 have opposing effects on macrophage activation and disease progression in a mouse model of CMT1X. These insights into opposing functions of disease-modulating cytokine isoforms might enable the development of specific therapeutic approaches.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Connexins/genetics , Connexins/metabolism , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/pathology , Membrane Proteins/metabolism , Neurons/pathology , Animals , Charcot-Marie-Tooth Disease/metabolism , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Gene Dosage , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/pathology , Signal Transduction/drug effects , Gap Junction beta-1 Protein
17.
Blood ; 125(8): e1-13, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25573988

ABSTRACT

Macrophage polarization between the M2 (repair, protumorigenic) and M1 (inflammatory) phenotypes is seen as a continuum of states. The detailed transcriptional events and signals downstream of colony-stimulating factor 1 receptor (CSF-1R) that contributes to amplification of the M2 phenotype and suppression of the M1 phenotype are largely unknown. Macrophage CSF-1R pTyr-721 signaling promotes cell motility and enhancement of tumor cell invasion in vitro. Combining analysis of cellular systems for CSF-1R gain of function and loss of function with bioinformatic analysis of the macrophage CSF-1R pTyr-721-regulated transcriptome, we uncovered microRNA-21 (miR-21) as a downstream molecular switch controlling macrophage activation and identified extracellular signal-regulated kinase1/2 and nuclear factor-κB as CSF-1R pTyr-721-regulated signaling nodes. We show that CSF-1R pTyr-721 signaling suppresses the inflammatory phenotype, predominantly by induction of miR-21. Profiling of the miR-21-regulated messenger RNAs revealed that 80% of the CSF-1-regulated canonical miR-21 targets are proinflammatory molecules. Additionally, miR-21 positively regulates M2 marker expression. Moreover, miR-21 feeds back to positively regulate its own expression and to limit CSF-1R-mediated activation of extracellular signal-regulated kinase1/2 and nuclear factor-κB. Consistent with an anti-inflammatory role of miRNA-21, intraperitoneal injection of mice with a miRNA-21 inhibitor increases the recruitment of inflammatory monocytes and enhances the peritoneal monocyte/macrophage response to lipopolysaccharide. These results identify the CSF-1R-regulated miR-21 network that modulates macrophage polarization.


Subject(s)
Inflammation/genetics , Macrophages, Peritoneal/immunology , MicroRNAs/genetics , Receptor, Macrophage Colony-Stimulating Factor/physiology , Animals , Cell Movement/genetics , Cell Movement/immunology , Cell Polarity/genetics , Cell Polarity/immunology , Cells, Cultured , Gene Regulatory Networks , Inflammation/immunology , Macrophage Activation/genetics , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction/genetics , Up-Regulation/genetics , Up-Regulation/immunology
18.
Acta Neuropathol ; 134(3): 441-458, 2017 09.
Article in English | MEDLINE | ID: mdl-28685323

ABSTRACT

Whereas microglia involvement in virtually all brain diseases is well accepted their role in the control of homeostasis in the central nervous system (CNS) is mainly thought to be the maintenance of neuronal function through the formation, refinement, and monitoring of synapses in both the developing and adult brain. Although the prenatal origin as well as the neuron-centered function of cortical microglia has recently been elucidated, much less is known about a distinct amoeboid microglia population formerly described as the "fountain of microglia" that appears only postnatally in myelinated regions such as corpus callosum and cerebellum. Using large-scale transcriptional profiling, fate mapping, and genetic targeting approaches, we identified a unique molecular signature of this microglia subset that arose from a CNS endogenous microglia pool independent from circulating myeloid cells. Microglia depletion experiments revealed an essential role of postnatal microglia for the proper development and homeostasis of oligodendrocytes and their progenitors. Our data provide new cellular and molecular insights into the myelin-supporting function of microglia in the normal CNS.


Subject(s)
Microglia/physiology , Myelin Sheath/physiology , Oligodendrocyte Precursor Cells/physiology , Oligodendroglia/physiology , Animals , Cell Proliferation/physiology , Mice
19.
Angiogenesis ; 19(4): 513-24, 2016 10.
Article in English | MEDLINE | ID: mdl-27464987

ABSTRACT

Lymphatic vessels play important roles in fluid drainage and in immune responses, as well as in pathological processes including cancer progression and inflammation. While the molecular regulation of the earliest lymphatic vessel differentiation and development has been investigated in much detail, less is known about the control and timing of lymphatic vessel maturation in different organs, which often occurs postnatally. We investigated the time course of lymphatic vessel development on the pleural side of the diaphragmatic muscle in mice, the so-called submesothelial initial diaphragmatic lymphatic plexus. We found that this lymphatic network develops largely after birth and that it can serve as a reliable and easily quantifiable model to study physiological lymphangiogenesis in vivo. Lymphangiogenic growth in this tissue was highly dependent on vascular endothelial growth factor receptor (VEGFR)-3 signaling, whereas VEGFR-1 and -2 signaling was dispensable. During diaphragm development, macrophages appeared first in a linearly arranged pattern, followed by ingrowth of lymphatic vessels along these patterned lines. Surprisingly, ablation of macrophages in colony-stimulating factor-1 receptor (Csf1r)-deficient mice and by treatment with a CSF-1R-blocking antibody did not inhibit the general lymphatic vessel development in the diaphragm but specifically promoted branch formation of lymphatic sprouts. In agreement with these findings, incubation of cultured lymphatic endothelial cells with conditioned medium from P7 diaphragmatic macrophages significantly reduced LEC sprouting. These results indicate that the postnatal diaphragm provides a suitable model for studies of physiological lymphangiogenic growth and maturation, and for the identification of modulators of lymphatic vessel growth.


Subject(s)
Diaphragm/growth & development , Lymphangiogenesis/physiology , Macrophages/physiology , Vascular Endothelial Growth Factor Receptor-3/physiology , Animals , Animals, Newborn , Cells, Cultured , Culture Media, Conditioned , Diaphragm/cytology , Diaphragm/physiology , Female , Lymphatic Vessels/cytology , Lymphatic Vessels/physiology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/deficiency , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Signal Transduction , Vascular Endothelial Growth Factor Receptor-3/antagonists & inhibitors
20.
Stem Cells ; 33(12): 3397-421, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26976235

ABSTRACT

A collection of tributes and remembrances from esteemed colleagues, mentees, and friends on the life and work of "the father of hematopoietic cytokines".


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Animals , History, 20th Century , History, 21st Century , Humans , Portraits as Topic
SELECTION OF CITATIONS
SEARCH DETAIL