Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nat Rev Genet ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724711

ABSTRACT

Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.

2.
Cell ; 156(4): 625-6, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24529367

ABSTRACT

Anti-vascular endothelial growth factor (VEGF) cancer immunotherapy targets angiogenesis but development of resistance in patients is common. In this issue of Cell, Croci et al. identify a complex set of mechanisms by which galectin-1 prolongs cell-surface retention of VEGF receptor 2 (VEGFR2) and stimulates VEGF-independent tumor angiogenesis.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Neoplasms/blood supply , Neoplasms/drug therapy , Neovascularization, Pathologic , Vascular Endothelial Growth Factors/antagonists & inhibitors , Animals , Humans
3.
J Biol Chem ; 299(12): 105406, 2023 12.
Article in English | MEDLINE | ID: mdl-38270391

ABSTRACT

Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.


Subject(s)
Fucose , Monosaccharide Transport Proteins , Nucleotide Transport Proteins , Animals , Female , Humans , Mice , Pregnancy , Epidermal Growth Factor , Fucose/metabolism , HEK293 Cells , Monosaccharide Transport Proteins/genetics , Neoplasm Proteins , Nucleotide Transport Proteins/genetics , Thrombospondins/metabolism , Mice, Knockout , Receptor, Notch1/metabolism , Signal Transduction
4.
J Biol Chem ; 298(7): 102064, 2022 07.
Article in English | MEDLINE | ID: mdl-35623385

ABSTRACT

NOTCH1 is a transmembrane receptor that initiates a cell-cell signaling pathway controlling various cell fate specifications in metazoans. The addition of O-fucose by protein O-fucosyltransferase 1 (POFUT1) to epidermal growth factor-like (EGF) repeats in the NOTCH1 extracellular domain is essential for NOTCH1 function, and modification of O-fucose with GlcNAc by the Fringe family of glycosyltransferases modulates Notch activity. Prior cell-based studies showed that POFUT1 modifies EGF repeats containing the appropriate consensus sequence at high stoichiometry, while Fringe GlcNAc-transferases (LFNG, MFNG, and RFNG) modify O-fucose on only a subset of NOTCH1 EGF repeats. Previous in vivo studies showed that each FNG affects naïve T cell development. To examine Fringe modifications of NOTCH1 at a physiological level, we used mass spectral glycoproteomic methods to analyze O-fucose glycans of endogenous NOTCH1 from activated T cells obtained from mice lacking all Fringe enzymes or expressing only a single FNG. While most O-fucose sites were modified at high stoichiometry, only EGF6, EGF16, EGF26, and EGF27 were extended in WT T cells. Additionally, cell-based assays of NOTCH1 lacking fucose at each of those O-fucose sites revealed small but significant effects of LFNG on Notch-Delta binding in the EGF16 and EGF27 mutants. Finally, in activated T cells expressing only LFNG, MFNG, or RFNG alone, the extension of O-fucose with GlcNAc in the same EGF repeats was diminished, consistent with cooperative interactions when all three Fringes were present. The combined data open the door for the analysis of O-glycans on endogenous NOTCH1 derived from different cell types.


Subject(s)
Epidermal Growth Factor , Fucose , Receptor, Notch1/metabolism , Animals , Epidermal Growth Factor/metabolism , Fucose/metabolism , Glucosyltransferases , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Mice , Polysaccharides/metabolism , Receptors, Notch/metabolism , T-Lymphocytes/metabolism
5.
Biochem Soc Trans ; 50(2): 689-701, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35311893

ABSTRACT

Intestinal homeostasis is key to the maintenance of good health. The small intestine plays important roles in absorption, digestion, hormonal and immune functions. Crypt base columnar (CBC) stem cells residing at the bottom of crypts are nurtured by Paneth cells, and together create the stem cell niche, the foundation of intestinal homeostasis. CBC stem cells replicate to replenish their number, or differentiate into a variety of epithelial cells with specialized functions. Notch signaling is a cell-cell signaling pathway that regulates both the proliferation and differentiation of CBC stem cells. NOTCH1 and NOTCH2 stimulated by canonical Notch ligands DLL1 and DLL4 mediate Notch signaling in the intestine that, in concert with other signaling pathways including the WNT and BMP pathways, determines cell fates. Importantly, interactions between Notch receptors and canonical Notch ligands are regulated by O-glycans linked to Ser/Thr in epidermal growth factor-like (EGF) repeats of the Notch receptor extracellular domain (NECD). The O-glycans attached to NECD are key regulators of the strength of Notch signaling. Imbalances in Notch signaling result in altered cell fate decisions and may lead to cancer in the intestine. In this review, we summarize the impacts of mutations in Notch pathway members on intestinal development and homeostasis, with a focus on the glycosyltransferases that transfer O-glycans to EGF repeats of NOTCH1, NOTCH2, DLL1 and DLL4.


Subject(s)
Epidermal Growth Factor , Receptors, Notch , Intestines , Ligands , Polysaccharides/metabolism , Receptors, Notch/metabolism , Signal Transduction
6.
J Biol Chem ; 295(41): 14053-14064, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32763972

ABSTRACT

The membrane-bound, long form of MGAT4D, termed MGAT4D-L, inhibits MGAT1 activity in transfected cells and reduces the generation of complex N-glycans. MGAT1 is the GlcNAc-transferase that initiates complex and hybrid N-glycan synthesis. We show here that Drosophila MGAT1 was also inhibited by MGAT4D-L in S2 cells. In mammalian cells, expression of MGAT4D-L causes the substrate of MGAT1 (Man5GlcNAc2Asn) to accumulate on glycoproteins, a change that is detected by the lectin Galanthus nivalis agglutinin (GNA). Using GNA binding as an assay for the inhibition of MGAT1 in MGAT4D-L transfectants, we performed site-directed mutagenesis to determine requirements for MGAT1 inhibition. Deletion of 25 amino acids (aa) from the C terminus inactivated MGAT4D-L, but deletion of 20 aa did not. Conversion of the five key amino acids (PSLFQ) to Ala, or deletion of PSLFQ in the context of full-length MGAT4D-L, also inactivated MGAT1 inhibitory activity. Nevertheless, mutant, inactive MGAT4D-L interacted with MGAT1 in co-immuno-precipitation experiments. The PSLFQ sequence also occurs in MGAT4A and MGAT4B GlcNAc-transferases. However, neither inhibited MGAT1 in transfected CHO cells. MGAT4D-L inhibitory activity could be partially transferred by attaching PSLFQ or the 25-aa C terminus of MGAT4D-L to the C terminus of MGAT1. Mutation of each amino acid in PSLFQ to Ala identified both Leu and Phe as independently essential for MGAT4D-L activity. Thus, replacement of either Leu-395 or Phe-396 with Ala led to inactivation of MGAT4D-L inhibitory activity. These findings provide new insights into the mechanism of inhibition of MGAT1 by MGAT4D-L, and for the development of small molecule inhibitors of MGAT1.


Subject(s)
Drosophila Proteins , Enzyme Inhibitors/metabolism , Membrane Proteins , N-Acetylglucosaminyltransferases , Point Mutation , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , HL-60 Cells , Humans , Mannose-Binding Lectins/chemistry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Plant Lectins/chemistry , Polysaccharides/biosynthesis , Polysaccharides/genetics , Protein Binding , Protein Domains , Sequence Deletion
7.
Nat Chem Biol ; 14(1): 65-71, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29176671

ABSTRACT

Notch is a cell-surface receptor that controls cell-fate decisions and is regulated by O-glycans attached to epidermal growth factor-like (EGF) repeats in its extracellular domain. Protein O-fucosyltransferase 1 (Pofut1) modifies EGF repeats with O-fucose and is essential for Notch signaling. Constitutive activation of Notch signaling has been associated with a variety of human malignancies. Therefore, tools that inhibit Notch activity are being developed as cancer therapeutics. To this end, we screened L-fucose analogs for their effects on Notch signaling. Two analogs, 6-alkynyl and 6-alkenyl fucose, were substrates of Pofut1 and were incorporated directly into Notch EGF repeats in cells. Both analogs were potent inhibitors of binding to and activation of Notch1 by Notch ligands Dll1 and Dll4, but not by Jag1. Mutagenesis and modeling studies suggest that incorporation of the analogs into EGF8 of Notch1 markedly reduces the ability of Delta ligands to bind and activate Notch1.


Subject(s)
EGF Family of Proteins/metabolism , Fucose/analogs & derivatives , Fucose/pharmacology , Fucosyltransferases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Notch/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Fucose/chemistry , Fucose/genetics , Fucosyltransferases/genetics , HEK293 Cells , Humans , Ligands , Protein Binding
8.
BMC Dev Biol ; 19(1): 19, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31590629

ABSTRACT

BACKGROUND: Mouse NOTCH1 carries a highly conserved O-fucose glycan at Thr466 in epidermal growth factor-like repeat 12 (EGF12) of the extracellular domain. O-Fucose at this site has been shown by X-ray crystallography to be recognized by both DLL4 and JAG1 Notch ligands. We previously showed that a Notch1 Thr466Ala mutant exhibits very little ligand-induced NOTCH1 signaling in a reporter assay, whereas a Thr466Ser mutation enables the transfer of O-fucose and reverts the NOTCH1 signaling defect. We subsequently generated a mutant mouse with the Thr466Ala mutation termed Notch1[12f](Notch1tm2Pst). Surprisingly, homozygous Notch1[12f/12f] mutants on a mixed background were viable and fertile. RESULTS: We now report that after backcrossing to C57BL/6 J mice for 11-15 generations, few homozygous Notch1[12f/12f] embryos were born. Timed mating showed that embryonic lethality occurred by embryonic day (E) ~E11.5, somewhat delayed compared to mice lacking Notch1 or Pofut1 (the O-fucosyltransferase that adds O-fucose to Notch receptors), which die at ~E9.5. The phenotype of C57BL/6 J Notch1[12f/12f] embryos was milder than mutants affected by loss of a canonical Notch pathway member, but disorganized vasculogenesis in the yolk sac, delayed somitogenesis and development were characteristic. In situ hybridization of Notch target genes Uncx4.1 and Dll3 or western blot analysis of NOTCH1 cleavage did not reveal significant differences at E9.5. However, qRT-PCR of head cDNA showed increased expression of Dll3, Uncx4.1 and Notch1 in E9.5 Notch1[12f/12f] embryos. Sequencing of cDNA from Notch1[12f/12f] embryo heads and Southern analysis showed that the Notch1[12f] locus was intact following backcrossing. We therefore looked for evidence of modifying gene(s) by crossing C57BL/6 J Notch1 [12f/+] mice to 129S2/SvPasCrl mice. Intercrosses of the F1 progeny gave viable F2 Notch1[12f/12f] mice. CONCLUSION: We conclude that the 129S2/SvPasCrl genome contains a dominant modifying gene that rescues the functions of NOTCH1[12f] in signaling. Identification of the modifying gene has the potential to illuminate novel factor(s) that promote Notch signaling when an O-fucose glycan is absent from EGF12 of NOTCH1.


Subject(s)
Amino Acid Substitution , Embryo, Mammalian/anatomy & histology , Genes, Modifier , Inbreeding/methods , Receptor, Notch1/genetics , Alanine/metabolism , Animals , Embryonic Development , Female , Fucose/metabolism , Genome , Homozygote , Male , Mice , Mice, Inbred C57BL , Phenotype , Protein Domains , Receptor, Notch1/chemistry , Receptor, Notch1/metabolism , Threonine/metabolism
9.
Glycobiology ; 29(9): 620-624, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31184695

ABSTRACT

The Symbol Nomenclature for Glycans (SNFG) is a community-curated standard for the depiction of monosaccharides and complex glycans using various colored-coded, geometric shapes, along with defined text additions. It is hosted by the National Center for Biotechnology Information (NCBI) at the NCBI-Glycans Page (www.ncbi.nlm.nih.gov/glycans/snfg.html). Several changes have been made to the SNFG page in the past year to update the rules for depicting glycans using the SNFG, to include more examples of use, particularly for non-mammalian organisms, and to provide guidelines for the depiction of ambiguous glycan structures. This Glycoforum article summarizes these recent changes.


Subject(s)
National Library of Medicine (U.S.)/organization & administration , Polysaccharides/chemistry , Terminology as Topic , Animals , Internet , Polysaccharides/classification , United States
10.
J Immunol ; 196(1): 232-43, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26608918

ABSTRACT

Lunatic, Manic, and Radical Fringe (LFNG, MFNG, and RFNG) are N-acetylglucosaminyltransferases that modify Notch receptors and regulate Notch signaling. Loss of LFNG affects thymic T cell development, and LFNG and MFNG are required for marginal zone (MZ) B cell development. However, roles for MFNG and RFNG in T cell development, RFNG in B cell development, or Fringes in T and B cell activation are not identified. In this study, we show that Lfng/Mfng/Rfng triple knockout (Fng tKO) mice exhibited reduced binding of DLL4 Notch ligand to CD4/CD8 double-negative (DN) T cell progenitors, and reduced expression of NOTCH1 targets Deltex1 and CD25. Fng tKO mice had reduced frequencies of DN1/cKit(+) and DN2 T cell progenitors and CD4(+)CD8(+) double-positive (DP) T cell precursors, but increased frequencies of CD4(+) and CD8(+) single-positive T cells in the thymus. In spleen, Fng tKO mice had reduced frequencies of CD4(+), CD8(+), central memory T cells and MZ B cells, and an increased frequency of effector memory T cells, neutrophils, follicular, and MZ P B cells. The Fng tKO phenotype was cell-autonomous and largely rescued in mice expressing one allele of a single Fng gene. Stimulation of Fng tKO splenocytes with anti-CD3/CD28 beads or LPS gave reduced proliferation compared with controls, and the generation of activated T cells by Concanavalin A or L-PHA was also reduced in Fng tKO mice. Therefore, each Fringe contributes to T and B cell development, and Fringe is required for optimal in vitro stimulation of T and B cells.


Subject(s)
B-Lymphocytes/cytology , Glycosyltransferases/immunology , Precursor Cells, T-Lymphoid/cytology , Proteins/immunology , Adaptor Proteins, Signal Transducing , Animals , B-Lymphocytes/immunology , CD28 Antigens/immunology , CD3 Complex/immunology , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Calcium-Binding Proteins/metabolism , Cell Differentiation/immunology , Cell Proliferation , Concanavalin A/pharmacology , DNA-Binding Proteins/immunology , Glucosyltransferases , Glycosyltransferases/genetics , Immunologic Memory/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-2 Receptor alpha Subunit/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Jagged-2 Protein , Lipopolysaccharides , Lymphocyte Activation/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Precursor Cells, T-Lymphoid/immunology , Proteins/genetics , Receptor, Notch1/biosynthesis , Receptor, Notch1/immunology , Receptor, Notch2/biosynthesis , Receptor, Notch2/immunology , Serrate-Jagged Proteins , Thymus Gland/cytology , Ubiquitin-Protein Ligases
11.
Biochem Soc Trans ; 45(2): 401-408, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28408480

ABSTRACT

Here, we describe a recently discovered O-GlcNAc transferase termed EOGT for EGF domain-specific O-GlcNAc transferase. EOGT transfers GlcNAc (N-acetylglucosamine) to Ser or Thr in secreted and membrane proteins that contain one or more epidermal growth factor-like repeats with a specific consensus sequence. Thus, EOGT is distinct from OGT, the O-GlcNAc transferase, that transfers GlcNAc to Ser/Thr in proteins of the cytoplasm or nucleus. EOGT and OGT are in separate cellular compartments and have mostly distinct substrates, although both can act on cytoplasmic (OGT) and lumenal (EOGT) domains of transmembrane proteins. The present review will describe known substrates of EOGT and biological roles for EOGT in Drosophila and humans. Mutations in EOGT that give rise to Adams-Oliver Syndrome in humans will also be discussed.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Ectodermal Dysplasia/genetics , Limb Deformities, Congenital/genetics , N-Acetylglucosaminyltransferases/metabolism , Scalp Dermatoses/congenital , Acetylglucosamine/metabolism , Animals , Drosophila Proteins/chemistry , Drosophila melanogaster/chemistry , Gene Expression Regulation, Developmental , Humans , Mutation , N-Acetylglucosaminyltransferases/chemistry , N-Acetylglucosaminyltransferases/genetics , Protein Domains , Scalp Dermatoses/genetics , Signal Transduction , Substrate Specificity
12.
Stem Cells ; 33(7): 2280-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25851125

ABSTRACT

Notch is long recognized as a signaling molecule important for stem cell self-renewal and fate determination. Here, we reveal a novel adhesive role of Notch-ligand engagement in hematopoietic stem and progenitor cells (HSPCs). Using mice with conditional loss of O-fucosylglycans on Notch EGF-like repeats important for the binding of Notch ligands, we report that HSPCs with faulty ligand binding ability display enhanced cycling accompanied by increased egress from the marrow, a phenotype mainly attributed to their reduced adhesion to Notch ligand-expressing stromal cells and osteoblastic cells and their altered occupation in osteoblastic niches. Adhesion to Notch ligand-bearing osteoblastic or stromal cells inhibits wild type but not O-fucosylglycan-deficient HSPC cycling, independent of RBP-JK -mediated canonical Notch signaling. Furthermore, Notch-ligand neutralizing antibodies induce RBP-JK -independent HSPC egress and enhanced HSPC mobilization. We, therefore, conclude that Notch receptor-ligand engagement controls HSPC quiescence and retention in the marrow niche that is dependent on O-fucosylglycans on Notch.


Subject(s)
Hematopoietic Stem Cells/metabolism , Receptors, Notch/metabolism , Stem Cell Niche/genetics , Stromal Cells/metabolism , Animals , Humans , Mice , Signal Transduction
13.
J Biol Chem ; 289(16): 11132-11142, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24573683

ABSTRACT

The transfer of N-acetylglucosamine (GlcNAc) to Ser or Thr in cytoplasmic and nuclear proteins is a well known post-translational modification that is catalyzed by the O-GlcNAc transferase OGT. A more recently identified O-GlcNAc transferase, EOGT, functions in the secretory pathway and transfers O-GlcNAc to proteins with epidermal growth factor-like (EGF) repeats. A number of antibodies that detect O-GlcNAc in cytosolic and nuclear extracts have been described previously. Here we compare seven of these antibodies (CTD110.6, 10D8, RL2, HGAC85, 18B10.C7(#3), 9D1.E4(#10), and 1F5.D6 (#14) for detection of the O-GlcNAc modification on extracellular domains of membrane or secreted glycoproteins that may also carry various N- and O-glycans. We found that CTD110.6 binds not only to O-GlcNAc on proteins but also to terminal ß-GlcNAc on the complex N-glycans of Lec8 Chinese hamster ovary (CHO) cells that lack UDP-Gal transporter activity and express GlcNAc-terminating, complex N-glycans. We show that CTD110.6, #3, and #10 antibodies can be used to detect cell surface glycoproteins bearing O-GlcNAc. Cell surface glycoproteins recognized by CTD110.6 antibody included NOTCH1 that possesses many EGF repeats with a consensus site for EOGT. Knockdown of CHO Eogt reduced binding of CTD110.6 to Lec1 CHO cells, and expression of a human EOGT cDNA increased the O-GlcNAc signal on Lec1 cells and the extracellular domain of NOTCH1. Thus, with careful controls, antibodies CTD110.6 (IgM), #3 (IgG), and #10 (IgG) can be used to detect membrane and secreted proteins modified by O-GlcNAc on EGF repeats.


Subject(s)
Acetylglucosamine/chemistry , Antibodies, Monoclonal, Murine-Derived/chemistry , Glycoproteins/chemistry , Acetylglucosamine/genetics , Acetylglucosamine/immunology , Acetylglucosamine/metabolism , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , CHO Cells , Cricetinae , Cricetulus , Glycoproteins/genetics , Glycoproteins/immunology , Glycoproteins/metabolism , Humans , N-Acetylglucosaminyltransferases/biosynthesis , N-Acetylglucosaminyltransferases/genetics , Repetitive Sequences, Amino Acid
14.
Proc Natl Acad Sci U S A ; 109(19): 7280-5, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22517741

ABSTRACT

O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 µg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-ß-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-ß-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe ß-1,3-N-acetylglucosaminyltransferases.


Subject(s)
Acetylglucosamine/metabolism , Brain/enzymology , N-Acetylglucosaminyltransferases/metabolism , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Binding Sites , Brain/metabolism , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Epidermal Growth Factor/metabolism , Glycoproteins/metabolism , Glycosylation , Mice , Molecular Sequence Data , Organelles/metabolism , Peptides/metabolism , Phosphorylation , Proteome/metabolism , Proteomics/methods
15.
Histochem Cell Biol ; 141(2): 153-64, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24078077

ABSTRACT

Various proteins are involved in the generation and maintenance of the membrane complex known as the Golgi apparatus. We have used mutant Chinese hamster ovary (CHO) cell lines Lec4 and Lec4A lacking N-acetylglucosaminyltransferase V (GlcNAcT-V, MGAT5) activity and protein in the Golgi apparatus to study the effects of the absence of a single glycosyltransferase on the Golgi apparatus dimension. Quantification of immunofluorescence in serial confocal sections for Golgi α-mannosidase II and electron microscopic morphometry revealed a reduction in Golgi volume density up to 49 % in CHO Lec4 and CHO Lec4A cells compared to parental CHO cells. This reduction in Golgi volume density could be reversed by stable transfection of Lec4 cells with a cDNA encoding Mgat5. Inhibition of the synthesis of ß1,6-branched N-glycans by swainsonine had no effect on Golgi volume density. In addition, no effect on Golgi volume density was observed in CHO Lec1 cells that contain enzymatically active GlcNAcT-V, but cannot synthesize ß1,6-branched glycans due to an inactive GlcNAcT-I in their Golgi apparatus. These results indicate that it may be the absence of the GlcNAcT-V protein that is the determining factor in reducing Golgi volume density. No dimensional differences existed in cross-sectioned cisternal stacks between Lec4 and control CHO cells, but significantly reduced Golgi stack hits were observed in cross-sectioned Lec4 cells. Therefore, the Golgi apparatus dimensional change in Lec4 and Lec4A cells may be due to a compaction of the organelle.


Subject(s)
Golgi Apparatus/enzymology , Golgi Apparatus/ultrastructure , N-Acetylglucosaminyltransferases/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Golgi Apparatus/genetics , Microscopy, Confocal , Mutation , N-Acetylglucosaminyltransferases/genetics
16.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948797

ABSTRACT

Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.

17.
J Biol Chem ; 287(1): 474-483, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22081605

ABSTRACT

NOTCH signaling induced by Delta1 (DLL1) and Jagged1 (JAG1) NOTCH ligands is modulated by the ß3N-acetylglucosaminyl transferase Fringe. LFNG (Lunatic Fringe) and MFNG (Manic Fringe) transfer N-acetylglucosamine (GlcNAc) to O-fucose attached to EGF-like repeats of NOTCH receptors. In co-culture NOTCH signaling assays, LFNG generally enhances DLL1-induced, but inhibits JAG1-induced, NOTCH signaling. In mutant Chinese hamster ovary (CHO) cells that do not add galactose (Gal) to the GlcNAc transferred by Fringe, JAG1-induced NOTCH signaling is not inhibited by LFNG or MFNG. In mouse embryos lacking B4galt1, NOTCH signaling is subtly reduced during somitogenesis. Here we show that DLL1-induced NOTCH signaling in CHO cells was enhanced by LFNG, but this did not occur in either Lec8 or Lec20 CHO mutants lacking Gal on O-fucose glycans. Lec20 mutants corrected with a B4galt1 cDNA became responsive to LFNG. By contrast, MFNG promoted DLL1-induced NOTCH signaling better in the absence of Gal than in its presence. This effect was reversed in Lec8 cells corrected by expression of a UDP-Gal transporter cDNA. The MFNG effect was abolished by a DDD to DDA mutation that inactivates MFNG GlcNAc transferase activity. The binding of soluble NOTCH ligands and NOTCH1/EGF1-36 generally reflected changes in NOTCH signaling caused by LFNG and MFNG. Therefore, the presence of Gal on O-fucose glycans differentially affects DLL1-induced NOTCH signaling modulated by LFNG versus MFNG. Gal enhances the effect of LFNG but inhibits the effect of MFNG on DLL1-induced NOTCH signaling, with functional consequences for regulating the strength of NOTCH signaling.


Subject(s)
Galactose/metabolism , Glycosyltransferases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Proteins/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , CHO Cells , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cricetinae , Cricetulus , Epidermal Growth Factor/metabolism , Extracellular Space/metabolism , Glucosyltransferases , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Membrane Proteins/chemistry , Mice , Polysaccharides/metabolism , Protein Structure, Tertiary , Receptors, Notch/chemistry , Serrate-Jagged Proteins , Solubility
18.
Glycobiology ; 23(12): 1477-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24037315

ABSTRACT

Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3(-/-)/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3(-/-)/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease Progression , Galectins/metabolism , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Polysaccharides/metabolism , Animals , Antigens, Polyomavirus Transforming/metabolism , Breast Neoplasms/genetics , Disease Models, Animal , Female , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Tumor Virus, Mouse/metabolism , Mice , Mice, Inbred Strains , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism
19.
Blood ; 117(21): 5652-62, 2011 May 26.
Article in English | MEDLINE | ID: mdl-21464368

ABSTRACT

Notch signaling is essential for lymphocyte development and is also implicated in myelopoiesis. Notch receptors are modified by O-fucosylation catalyzed by protein O-fucosyltransferase 1 (Pofut1). Fringe enzymes add N-acetylglucosamine to O-fucose and modify Notch signaling by altering the sensitivity of Notch receptors to Notch ligands. To address physiologic functions in hematopoiesis of Notch modified by O-fucose glycans, we examined mice with inducible inactivation of Pofut1 using Mx-Cre. These mice exhibited a reduction in T lymphopoiesis and in the production of marginal-zone B cells, in addition to myeloid hyperplasia. Restoration of Notch1 signaling rescued T lymphopoiesis and the marrow myeloid hyperplasia. After marrow transfer, both cell-autonomous and environmental cues were found to contribute to lymphoid developmental defects and myeloid hyperplasia in Pofut1-deleted mice. Although Pofut1 deficiency slightly decreased cell surface expression of Notch1 and Notch2, it completely abrogated the binding of Notch receptors with Delta-like Notch ligands and suppressed downstream Notch target activation, indicating that O-fucose glycans are critical for efficient Notch-ligand binding that transduce Notch signals. The combined data support a key role for the O-fucose glycans generated by Pofut1 in Notch regulation of hematopoietic homeostasis through modulation of Notch-ligand interactions.


Subject(s)
Fucosyltransferases/physiology , Homeostasis/physiology , Lymphopoiesis/physiology , Myelopoiesis/physiology , Receptors, Notch/metabolism , Animals , Bone Marrow Transplantation , Cell Differentiation , Cells, Cultured , Flow Cytometry , Fucose/metabolism , Humans , Hydro-Lyases/metabolism , Hyperplasia/enzymology , Hyperplasia/pathology , Integrases/metabolism , Ligands , Mice , Mice, Knockout , Mice, Transgenic , RNA, Messenger/genetics , Receptors, Notch/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , T-Lymphocytes/enzymology , T-Lymphocytes/pathology
20.
Immunol Rev ; 230(1): 201-15, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19594638

ABSTRACT

Notch signaling is required for the development of all T cells and marginal zone (MZ) B cells. Specific roles in T- and B-cell differentiation have been identified for different Notch receptors, the canonical Delta-like (Dll) and Jagged (Jag) Notch ligands, and downstream effectors of Notch signaling. Notch receptors and ligands are post-translationally modified by the addition of glycans to extracellular domain epidermal growth factor-like (EGF) repeats. The O-fucose glycans of Notch cell-autonomously modulate Notch-ligand interactions and the strength of Notch signaling. These glycans are initiated by protein O-fucosyltransferase 1 (Pofut1), and elongated by the transfer of N-acetylglucosamine (GlcNAc) to the fucose by beta1,3GlcNAc-transferases termed lunatic, manic, or radical fringe. This review discusses T- and B-cell development from progenitors deficient in O-fucose glycans. The combined data show that Lfng and Mfng regulate T-cell development by enhancing the interactions of Notch1 in T-cell progenitors with Dll4 on thymic epithelial cells. In the spleen, Lfng and Mfng cooperate to modify Notch2 in MZ B progenitors, enhancing their interaction with Dll1 on endothelial cells and regulating MZ B-cell production. Removal of O-fucose affects Notch signaling in myelopoiesis and lymphopoiesis, and the O-fucose glycan in the Notch1 ligand-binding domain is required for optimal T-cell development.


Subject(s)
B-Lymphocytes/immunology , Fucose/immunology , Polysaccharides/immunology , Receptors, Notch/immunology , T-Lymphocytes/immunology , Animals , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Fucose/metabolism , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Polysaccharides/metabolism , Receptors, Notch/metabolism , Signal Transduction/immunology , T-Lymphocytes/metabolism , Transferases/immunology , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL