Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Transl Med ; 21(1): 123, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788606

ABSTRACT

BACKGROUND: The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unpredictable manifestations of coronavirus disease (COVID-19) and variable clinical course with some patients being asymptomatic whereas others experiencing severe respiratory distress, or even death. We aimed to evaluate the immunoglobulin G (IgG) response towards linear peptides on a peptide array containing sequences from SARS-CoV-2, Middle East respiratory syndrome-related coronavirus (MERS) and common-cold coronaviruses 229E, OC43, NL63 and HKU1 antigens, in order to identify immunological indicators of disease outcome in SARS-CoV-2 infected patients. METHODS: We included in the study 79 subjects, comprising 19 pediatric and 30 adult SARS-CoV-2 infected patients with increasing disease severity, from mild to critical illness, and 30 uninfected subjects who were vaccinated with one dose of SARS-CoV-2 spike mRNA BNT162b2 vaccine. Serum samples were analyzed by a peptide microarray containing 5828 overlapping 15-mer synthetic peptides corresponding to the full SARS-CoV-2 proteome and selected linear epitopes of spike (S), envelope (E) and membrane (M) glycoproteins as well as nucleoprotein (N) of MERS, SARS and coronaviruses 229E, OC43, NL63 and HKU1 (isolates 1, 2 and 5). RESULTS: All patients exhibited high IgG reactivity against the central region and C-terminus peptides of both SARS-CoV-2 N and S proteins. Setting the threshold value for serum reactivity above 25,000 units, 100% and 81% of patients with severe disease, 36% and 29% of subjects with mild symptoms, and 8% and 17% of children younger than 8-years reacted against N and S proteins, respectively. Overall, the total number of peptides in the SARS-CoV-2 proteome targeted by serum samples was much higher in children compared to adults. Notably, we revealed a differential antibody response to SARS-CoV-2 peptides of M protein between adults, mainly reacting against the C-terminus epitopes, and children, who were highly responsive to the N-terminus of M protein. In addition, IgG signals against NS7B, NS8 and ORF10 peptides were found elevated mainly among adults with mild (63%) symptoms. Antibodies towards S and N proteins of other coronaviruses (MERS, 229E, OC43, NL63 and HKU1) were detected in all groups without a significant correlation with SARS-CoV-2 antibody levels. CONCLUSIONS: Overall, our results showed that antibodies elicited by specific linear epitopes of SARS-CoV-2 proteome are age dependent and related to COVID-19 clinical severity. Cross-reaction of antibodies to epitopes of other human coronaviruses was evident in all patients with distinct profiles between children and adult patients. Several SARS-CoV-2 peptides identified in this study are of particular interest for the development of vaccines and diagnostic tests to predict the clinical outcome of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Epitopes , Adult , Child , Humans , Antibodies, Viral , BNT162 Vaccine , Coronavirus 229E, Human , COVID-19/immunology , Immunoglobulin G , Middle East Respiratory Syndrome Coronavirus , Proteome , SARS-CoV-2
2.
Int J Cancer ; 150(11): 1879-1888, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35253909

ABSTRACT

Penile carcinoma develops either through human papillomavirus (HPV) related or unrelated carcinogenic pathways. Genetic alterations and nucleotide changes in coding regions (ie, TP53, CDKN2A, PIK3CA and NOTCH1) are main cancer driver events either in HPV positive or in HPV negative tumours. We investigated the presence of hotspot nucleotide mutations in TERT promoter (TERTp) and PIK3CA exon 9 and their relationship with HPV status in 69 penile cancer cases from Italian and Ugandan patients. Genetic variations and viral sequences have been characterised by end-point polymerase chain reaction (PCR) and Sanger sequencing. The mutant allele frequencies (MAFs) of TERTp -124A/-146A and PIK3CA E545K have been determined by droplet digital PCR (ddPCR) assays. The results showed that TERTp mutations are highly prevalent in penile carcinoma (53.6%) and significantly more frequent in HPV negative (67.6%) than HPV positive (32.4%) cases (P = .0482). PIK3CA mutations were similarly distributed in virus-related and unrelated cases (25.9% and 26.7%, respectively) and coexisted with TERTp changes in 15.8% of penile carcinoma samples. Notably, MAFs of co-occurring mutations were frequently discordant indicating that PIK3CA E545K nucleotide changes are subsequent genetic events occurring in subclones of TERTp mutated cells. The frequencies of TERTp and PIK3CA mutations were higher among Italian compared to Ugandan cases and inversely correlated with the HPV status. In conclusion, TERTp mutations are very common in penile carcinoma and their coexistence with PIK3CA in a substantial number of cases may represent a novel oncogenic synergy relevant for patient stratification and use of therapeutic strategies against new actionable targets.


Subject(s)
Carcinoma, Squamous Cell , Class I Phosphatidylinositol 3-Kinases , Penile Neoplasms , Telomerase , Carcinoma, Squamous Cell/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Humans , Italy/epidemiology , Male , Mutation , Penile Neoplasms/genetics , Promoter Regions, Genetic , Telomerase/genetics , Uganda/epidemiology
3.
J Transl Med ; 16(1): 77, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29562930

ABSTRACT

BACKGROUND: Squamous cell carcinoma (SCC) of the conjunctiva is a common cancer in Africa mainly associated with solar ultraviolet (UV) exposure and human immunodeficiency virus (HIV) infection. We analyzed the role of HIV on the occurrence of telomerase reverse transcriptase (TERT) promoter mutations among a cohort of conjunctiva neoplasia Ugandan patients. METHODS: Telomerase reverse transcriptase promoter mutations were searched in 72 conjunctiva neoplasia cases, comprising SCC and intraepithelial neoplasia grade 1-3 (CIN1-3), as well as in 53 conjunctiva normal tissues and in 24 HIV-related Kaposi sarcoma. RESULTS: The average prevalence of TERT promoter mutations in conjunctiva neoplasia was 31.9%. The mutation rates were significantly higher in HIV-positive (31.8% of CIN1 and CIN2, 46.2% of CIN3 and SCC,) than HIV-negative patients (22.2% of CIN1 and CIN2, 13.3% of CIN3 and SCC). Such mutations were rarely identified among HIV-positive conjunctiva controls (3.6%) and never in Kaposi sarcoma lesions. The most frequent variations were the hot spots - 124G>A and - 146G>A and tandem transitions - 124_125GG>AA and - 138_139GG>AA. CONCLUSIONS: Telomerase reverse transcriptase promoter mutations are early events in conjunctival neoplasia and could be used for timely diagnosis of conjunctiva tumours. The high frequency of UV-signatures in HIV-positive conjunctiva lesions suggests an additive effect of the virus to UV-related mutagenesis.


Subject(s)
Conjunctival Neoplasms/genetics , Conjunctival Neoplasms/virology , HIV/physiology , Mutation/genetics , Promoter Regions, Genetic , Telomerase/genetics , Adult , Base Sequence , Case-Control Studies , Conjunctiva/pathology , Female , Herpesvirus 8, Human/physiology , Humans , Male , Papillomaviridae/physiology
4.
Oncology ; 89(3): 125-36, 2015.
Article in English | MEDLINE | ID: mdl-25967534

ABSTRACT

Tobacco use and alcohol consumption are the main risk factors associated with head and neck squamous cell carcinoma (SCC) development due to their cytotoxic and mutagenic effects on the exposed epithelia of the upper aerodigestive tract. Epstein-Barr virus (EBV) and high-risk human papillomaviruses (HPVs), both encoding viral oncoproteins able to interfere with cell cycle control, have been recognized as the etiological agents of nasopharynx carcinoma and a fraction of oropharyngeal carcinoma, respectively. Head and neck SCC is a deadly disease and despite innovative treatments represents a major challenge for patients. Recently, a number of genomic studies have highlighted the molecular heterogeneity of head and neck SCC based on methylation profiles, microRNA expression, mutated genes and new druggable pathways which may represent new targets for cancer-tailored therapies. To date, cetuximab is the only FDA-approved anti-epidermal growth factor receptor therapy for the treatment of head and neck SCC. In addition, a number of monoclonal antibodies targeting AKT, mTOR and PI3K pathways are under evaluation. Several therapeutic vaccines against HPV16 and EBV proteins are also under study. The purpose of this article is to review the epidemiology, pathogenesis and molecular features of head and neck SCC, with an emphasis on new therapies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Cancer Vaccines/pharmacology , Carcinoma, Squamous Cell , ErbB Receptors/metabolism , Head and Neck Neoplasms , Molecular Targeted Therapy/methods , Alcohol Drinking/adverse effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/etiology , Cetuximab , DNA Methylation/drug effects , Epstein-Barr Virus Infections/complications , ErbB Receptors/drug effects , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/epidemiology , Head and Neck Neoplasms/etiology , Human papillomavirus 16/drug effects , Humans , MicroRNAs/metabolism , Mutation/drug effects , Oncogene Protein v-akt/drug effects , Oncogene Protein v-akt/metabolism , Papillomavirus Infections/complications , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Risk Factors , Signal Transduction/drug effects , Smoking/adverse effects , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism
5.
Front Cell Dev Biol ; 11: 1286683, 2023.
Article in English | MEDLINE | ID: mdl-38033865

ABSTRACT

Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.

6.
Expert Opin Ther Targets ; 26(9): 767-780, 2022 09.
Article in English | MEDLINE | ID: mdl-36369706

ABSTRACT

INTRODUCTION: The expression of telomerase reverse transcriptase (TERT) in liver is restricted to rare cells, that are able to replace senescent hepatocytes and regenerate tissue in response to hepatic damage, while becoming extinguished in differentiated progeny cells. TERT gene is permanently activated in liver neoplasms from the very early stage of the hepatocarcinogenesis mainly through the accumulation of genetic alterations, virus-related insertional mutagenesis and somatic mutations in the TERT promoter region. Several lines of evidence suggest that telomerase, beyond the canonical function of telomeres elongation, has multiple oncogenic activities in cancer cells and may represent a promising therapeutic target in hepatocellular carcinoma (HCC). AREAS COVERED: We review the mechanisms of activation of telomerase in HCC, the canonical and non-canonical functions of TERT as well as experimental strategies to directly target telomerase or to inhibit pathways associated with telomerase activity. EXPERT OPINION: TERT holoenzyme and telomerase components represent promising therapeutic targets in the treatment of liver malignancies. Several chemical agents and natural products known to alter telomerase activity are under evaluation for their potency to inhibit telomeres attrition in cirrhosis and TERT function in liver cancer. Therefore, this review outlines the current strategies pursued to suppress the multiple mechanisms of the major telomerase components in liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Telomerase , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Telomerase/genetics , Telomerase/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Telomere/metabolism
7.
Cancers (Basel) ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36358677

ABSTRACT

Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus-telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.

8.
Viruses ; 12(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-33019742

ABSTRACT

Vertical transmission of human papillomaviruses (HPVs) from mother to infant is known to occur during labor, delivery or breastfeeding. Infection with mucosal HPV 6 and 11 may cause recurrent respiratory papillomatosis in children, which is a rare and severe respiratory disease. The cutaneous HPV genotypes have also been described to be transmitted from mother to newborn through skin-to-skin contacts and during breastfeeding. To investigate the perinatal transmission of alpha and beta HPVs we collected nasopharyngeal specimens from 0-12-months-old infants born by vaginal delivery and breastfed at the time of sample collection. The mucosal and cutaneous HPVs were searched by nested PCR using the MY09/11-MGPs and CP65/70-CP66/69 primer sets, respectively, and genotypes identified by direct sequencing analysis. Fourteen out of 113 (12.4%) samples tested positive for HPV and sequence analysis allowed us to identify eight beta genotypes (HPV 5b, 20, 25, 100, 107, 124, 152 and RTRX7). Moreover, we performed a comprehensive review of published studies on the prevalence of mucosal and cutaneous HPVs among 5126 newborns and observed that 10% and 53% were positive for alpha and beta HPVs, respectively. In all studies there was an inverse correlation between the rate of alpha HPV positivity and age, while a significant positive trend was observed in beta HPV detection and age with the highest rate among children older than 12 months (Χ2 test for trend of 10.6, p < 0.001). Further studies are needed to confirm the hypothesis that beta HPVs are transmitted to breastfeeding infants through shedding of viruses in the breast milk or on the external breast epithelium.


Subject(s)
Alphapapillomavirus/isolation & purification , Breast Feeding , Nasopharynx/virology , Alphapapillomavirus/genetics , DNA, Viral/analysis , Female , Genotype , Humans , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Polymerase Chain Reaction , Pregnancy , Prevalence , Respiratory Tract Infections , Skin/virology
9.
Front Oncol ; 10: 150, 2020.
Article in English | MEDLINE | ID: mdl-32154165

ABSTRACT

Prolonged infection of uterine cervix epithelium with human papillomavirus (HPV) and constitutive expression of viral oncogenes have been recognized as the main cause of the complex molecular changes leading to transformation of cervical epithelial cells. Deregulated expression of microRNAs (miRNA), long non-coding RNAs (lncRNA), and circular RNAs (circRNA) is involved in the initiation and promotion processes of cervical cancer development. Expression profiling of small RNAs in cervical neoplasia revealed up-regulated "oncogenic" miRNAs, such as miR-10a, miR-21, miR-19, and miR-146a, and down regulated "tumor suppressive" miRNAs, including miR-29a, miR-372, miR-214, and miR-218, associated with cell growth, malignant transformation, cell migration, and invasion. Also several lncRNAs, comprising among others HOTAIR, MALAT1, GAS5, and MEG3, have shown to be associated with various pathogenic processes such as tumor progression, invasion as well as therapeutic resistance and emerged as new diagnostic and prognostic biomarkers in cervical cancer. Moreover, human genes encoded circular RNAs, such as has_circ-0018289, have shown to sponge specific miRNAs and to concur to the deregulation of target genes. Viral encoded circE7 has also demonstrated to overexpress E7 oncoprotein thus contributing to cell transformation. In this review, we summarize current literature on the complex interplay between miRNAs, lncRNAs, and circRNAs and their role in cervical neoplasia.

10.
Front Physiol ; 9: 1953, 2018.
Article in English | MEDLINE | ID: mdl-30713505

ABSTRACT

This study was aimed to characterize the geometric arrangement of hamster skeletal muscle arteriolar networks and to assess the in vivo rhythmic diameter changes of arterioles to clarify regulatory mechanisms of the capillary perfusion. The experimental study was carried out in male Syrian hamsters implanted with a plastic chamber in the dorsum skin under pentobarbital anesthesia. The skeletal muscle microvessels were visualized by fluorescence microscopy. The vessel diameters, lengths and the rhythmic diameter changes of arterioles were analyzed with computer-assisted techniques. The arterioles were classified according to a centripetal ordering scheme. In hamster skeletal muscle microvasculature the terminal branchings, differentiated in long and short terminal arteriolar trees (TATs), originated from anastomotic vessels, defined "arcading" arterioles. The long TATs presented different frequencies along the branching vessels; order 4 arterioles had frequencies lower than those observed in the order 3, 2, and 1 vessels. The short TAT order 3 arterioles, directly originating from "arcading" parent vessels, showed a frequency dominating all daughter arterioles. The amplitude of diameter variations in larger vessels was in the range 30-40% of mean diameter, while it was 80-100% in order 3, 2, and 1 vessels. Therefore, the complete constriction of arterioles, caused an intermittent capillary blood perfusion. L-arginine or papaverine infusion caused dilation of arterioles and transient disappearing of vasomotion waves and induced perfusion of all capillaries spreading from short and long TAT arrangements. Therefore, the capillary blood flow was modulated by changes in diameter of terminal arterioles penetrating within the skeletal muscle fibers, facilitating redistribution of blood flow according to the metabolic demands of tissues.

11.
Front Physiol ; 9: 540, 2018.
Article in English | MEDLINE | ID: mdl-29867577

ABSTRACT

The reactive oxygen species (ROS) are known to play a major role in many pathophysiological conditions, such as ischemia and reperfusion injury. The present study was aimed to evaluate the in vivo cyanidin (anthocyanin) effects on damages induced by rat pial microvascular hypoperfusion-reperfusion injury by cerebral blood flow decrease (CBFD) and subsequent cerebral blood flow recovery (CBFR). In particular, the main purpose was to detect changes in ROS production after cyanidin administration. Rat pial microvasculature was investigated using fluorescence microscopy through a cranial window (closed); Strahler's method was utilized to define the geometric features of pial vessels. ROS production was investigated in vivo by 2'-7'-dichlorofluorescein-diacetate assay and neuronal damage was measured on isolated brain sections by 2,3,5-triphenyltetrazolium chloride staining. After 30 min of CBFD, induced by bilateral common carotid artery occlusion, and 60 min of CBFR, rats showed decrease of arteriolar diameter and capillary perfusion; furthermore, increase in microvascular leakage and leukocyte adhesion was observed. Conversely, cyanidin administration induced dose-related arteriolar dilation, reduction in microvascular permeability as well as leukocyte adhesion when compared to animals subjected to restriction of cerebral blood flow; moreover, capillary perfusion was protected. ROS generation increase and marked neuronal damage were detected in animals subjected to CBFD and CBFR. On the other hand, cyanidin was able to reduce ROS generation and neuronal damage. In conclusion, cyanidin treatment showed dose-related protective effects on rat pial microcirculation during CBFD and subsequent CBFR, inducing arteriolar dilation by nitric oxide release and inhibiting ROS formation, consequently preserving the blood brain barrier integrity.

12.
Front Cell Neurosci ; 11: 298, 2017.
Article in English | MEDLINE | ID: mdl-28993725

ABSTRACT

The present study was aimed to in vivo assess the blood flow oscillatory patterns in rat pial microvessels during 30 min bilateral common carotid artery occlusion (BCCAO) and 60 min reperfusion by laser speckle imaging (LSI). Pial microcirculation was visualized by fluorescence microscopy. The blood flow oscillations of single microvessels were recorded by LSI; spectral analysis was performed by Wavelet transform. Under baseline conditions, arterioles and venules were characterized by blood flow oscillations in the frequency ranges 0.005-0.0095 Hz, 0.0095-0.021 Hz, 0.021-0.052 Hz, 0.052-0.150 Hz and 0.150-0.500 Hz. Arterioles showed oscillations with the highest spectral density when compared with venules. Moreover, the frequency components in the ranges 0.052-0.150 Hz and 0.150-0.500 were predominant in the arteriolar total power spectrum; while, the frequency component in the range 0.150-0.500 Hz showed the highest spectral density in venules. After 30 min BCCAO, the arteriolar spectral density decreased compared to baseline; moreover, the arteriolar frequency component in the range 0.052-0.150 Hz significantly decreased in percent spectral density, while the frequency component in the range 0.150-0.500 Hz significantly increased in percent spectral density. However, an increase in arteriolar spectral density was detected at 60 min reperfusion compared to BCCAO values; consequently, an increase in percent spectral density of the frequency component in the range 0.052-0.150 Hz was observed, while the percent spectral density of the frequency component in the range 0.150-0.500 Hz significantly decreased. The remaining frequency components did not significantly change during hypoperfusion and reperfusion. The changes in blood flow during hypoperfusion/reperfusion caused tissue damage in the cortex and striatum of all animals. In conclusion, our data demonstrate that the frequency component in the range 0.052-0.150 Hz, related to myogenic activity, was significantly impaired by hypoperfusion and reperfusion, affecting cerebral blood flow distribution and causing tissue damage.

13.
Infect Agent Cancer ; 12: 35, 2017.
Article in English | MEDLINE | ID: mdl-28649271

ABSTRACT

BACKGROUND: Electrochemotherapy (ECT) has shown to be an effective treatment for cutaneous and subcutaneous Kaposi sarcoma (KS) lesions. However, no study has investigated the impact of ECT treatment on the kinetics of human herpesvirus type 8 (HHV8), which is considered the necessary causal agent of KS. We aimed to evaluate HHV8 viral load and expression levels in patients affected by classic KS who received one or more ECT treatments and have been followed semi annually for up to four years. METHODS: A total of 27 classic KS patients were enrolled in this study. Tumour biopsies and blood samples were obtained before ECT treatment. Additional blood samples were collected at six month intervals for 12-48 months. HHV8 viral load and expression profiles of latent (ORF72 and ORF73) and lytic (K2, K8, K8.1, K10/K10.1, K10.5/K10.6 and ORF16) genes were assessed in all samples by real-time PCR. HHV8 ORF26 and K1 regions were amplified and subjected to direct nucleotide sequencing followed by phylogenetic analysis for variant identification. RESULTS: All KS biopsies and 46.4% of peripheral blood mononuclear cells (PBMCs) collected before ECT treatment were positive for HHV8 DNA. Viral load ranged from 0.02 to 2.3 copies per cell in KS lesions and 3.0 × 10-7 to 6.9 × 10-4 copies per cell in PBMCs. Overall, latent ORF72 and ORF73 as well as lytic K2, K8 and K10/K10.1 were expressed in all KS biopsies. ORF16 mRNA was detected in 71.4% and both K8.1 and K10.5/K10.6 mRNAs in 57.1% of KS samples. The ORF72, ORF73 and K2 transcripts were amplified in 37.5%, 25% and 25% of PBMCs collected before ECT, respectively. After the first ECT session, complete response was achieved in 20 out of 27 (74.1%) patients and HHV8 DNA was detected in four out of 27 (14.8%) PBMC samples at six month follow up. Phylogenetic analysis of ORF26 amplimers showed that most viral variants belonged to A/C (82.3%), and few to C2 (5.9%) or C3 (11.8%) subtype. The K1/VR1 variants fell into A (33.3%) and C (66.7%) HHV8 clade. No correlation was found between HHV8 subtypes and ECT complete response. CONCLUSIONS: ECT therapy has a significant effect on HHV8 kinetics in patients with classic KS. The complete remission of patients was accompanied by clearance of circulating virus.

14.
Oncotarget ; 8(21): 34070-34081, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28423662

ABSTRACT

Human papillomavirus type 16 (HPV16) is the major cause of cervical cancer and of a fraction of oropharyngeal carcinoma. Few studies compared the viral expression profiles in the two types of tumor. We analyzed HPV genotypes and viral load as well as early (E2/E4, E5, E6, E6*I, E6*II, E7) and late (L1 and L2) gene expression of HPV16 in cervical and oropharyngeal cancer biopsies. The study included 28 cervical squamous cell carcinoma (SCC) and ten oropharyngeal SCC, along with pair-matched non-tumor tissues, as well as four oropharynx dysplastic tissues and 112 cervical intraepithelial neoplasia biopsies. Viral load was found higher in cervical SCC (<1 to 694 copies/cell) and CIN (<1 to 43 copies/cell) compared to oropharyngeal SCC (<1 to 4 copies/cell). HPV16 E2/E4 and E5 as well as L1 and L2 mRNA levels were low in cervical SCC and CIN and undetectable in oropharynx cases. The HPV16 E6 and E7 mRNAs were consistently high in cervical SCC and low in oropharyngeal SCC. The analysis of HPV16 E6 mRNA expression pattern showed statistically significant higher levels of E6*I versus E6*II isoform in cervical SCC (p = 0.002) and a slightly higher expression of E6*I versus E6*II in oropharyngeal cases. In conclusion, the HPV16 E5, E6, E6*I, E6*II and E7 mRNA levels were more abundant in cervical SCC compared to oropharyngeal SCC suggesting different carcinogenic mechanisms in the two types of HPV-related cancers.


Subject(s)
Carcinoma, Squamous Cell/virology , Human papillomavirus 16/genetics , Oropharyngeal Neoplasms/virology , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/virology , Viral Proteins/genetics , Adult , Aged , Carcinoma, Squamous Cell/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Viral , Human papillomavirus 16/physiology , Humans , Male , Middle Aged , Oropharyngeal Neoplasms/genetics , Up-Regulation , Uterine Cervical Neoplasms/genetics , Viral Load
15.
Front Cell Neurosci ; 10: 153, 2016.
Article in English | MEDLINE | ID: mdl-27445688

ABSTRACT

The present study was aimed to evaluate the malvidin's protective effects on damage induced by 30 min bilateral common carotid artery occlusion (BCCAO) and 60 min reperfusion (RE) in rat pial microcirculation. Rat pial microcirculation was observed using fluorescence microscopy through a closed cranial window. Western blotting analysis was performed to investigate the endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS) and matrix metalloproteinase 9 (MMP-9) expression. Moreover, MMP-9 activity was evaluated by zymography. Finally, neuronal damage and radical oxygen species (ROS) formation were assessed. In all animals, pial arterioles were classified in five orders of branching according to Strahler's method. In hypoperfused rats, 30 min BCCAO and 60 min RE caused a decrease in arteriolar diameter, an increase in microvascular leakage and leukocyte adhesion, accompanied by decreased capillary perfusion and red blood cell velocity (VRBC). Moreover, marked neuronal damage and evident ROS generation were detected. Conversely, malvidin administration induced arteriolar dilation in dose-related manner, reducing microvascular leakage as well as leukocyte adhesion. Capillary perfusion and VRBC were protected. Nitric oxide (NO) synthase inhibition significantly attenuated malvidin's effects on arteriolar diameter. Western blotting analysis revealed an increase in eNOS and p-eNOS expression, while zymography indicated a decrease in MMP-9 activity after malvidin's administration. Furthermore, malvidin was able to prevent neuronal damage and to decrease ROS generation. In conclusion, malvidin protects rat pial microcirculation against BCCAO/RE injury, preventing blood-brain impairment and neuronal loss. Malvidin's effects appear to be mediated by eNOS activation and scavenger activity.

16.
PLoS One ; 11(4): e0150659, 2016.
Article in English | MEDLINE | ID: mdl-27070318

ABSTRACT

INTRODUCTION: The present study was aimed to assess the in vivo hamster pial microvessel alterations due to 30 min transient bilateral common carotid artery occlusion (BCCAO) and reperfusion (60 min); moreover, the neuroprotective effects of Vaccinium myrtillus extract, containing 34.7% of anthocyanins, were investigated. MATERIALS AND METHODS: Two groups of male hamsters were used: the first fed with control diet and the other with Vaccinium myrtillus supplemented diet. Hamster pial microcirculation was visualized by fluorescence microscopy through an open cranial window. Pial arterioles were classified according to Strahler's method. RESULTS: In age-matched control diet-fed hamsters, BCCAO caused a decrease in diameter of all arterioles. At the end of reperfusion, the reduction of diameter in order 3 arterioles was by 8.4 ± 3.1%, 10.8 ± 2.3% and 12.1 ± 1.1% of baseline in the 2, 4 and 6 month control diet-fed hamsters, respectively. Microvascular permeability and leukocyte adhesion were markedly enhanced, while perfused capillary length (PCL) decreased. The response to acetylcholine and papaverine topical application was impaired; 2'-7'-dichlorofluoresceine-diacetate assay demonstrated a significant ROS production. At the end of BCCAO, in age-matched Vaccinium myrtillussupplemented diet-fed hamsters, the arteriolar diameter did not significantly change compared to baseline. After 60 min reperfusion, order 3 arterioles dilated by 9.3 ± 2.4%, 10.6 ± 3.1% and 11.8 ± 2.7% of baseline in the 2, 4 and 6 month Vaccinium myrtillus supplemented diet-fed hamsters, respectively. Microvascular leakage and leukocyte adhesion were significantly reduced in all groups according to the time-dependent treatment, when compared with the age-matched control diet-fed hamsters. Similarly, the reduction in PCL was progressively prevented. Finally, the response to acetylcholine and papaverine topical application was preserved and there was no significant increase in ROS production in all groups. CONCLUSIONS: In conclusion, Vaccinium myrtillusextract protected pial microcirculation during hypoperfusion-reperfusion, preventing vasoconstriction, microvascular permeability, leukocyte adhesion, reduction in PCL and preserving the endothelium function.


Subject(s)
Anthocyanins/pharmacology , Microcirculation/drug effects , Microvessels/drug effects , Pia Mater/blood supply , Reperfusion Injury/physiopathology , Acetylcholine/pharmacology , Animals , Arterioles/drug effects , Arterioles/metabolism , Capillary Permeability/drug effects , Cell Adhesion/drug effects , Cerebrovascular Circulation/drug effects , Cricetinae , Leukocytes/drug effects , Male , Mesocricetus , Microvessels/metabolism , Neuroprotective Agents/pharmacology , Papaverine/pharmacology , Plant Extracts , Reactive Oxygen Species/metabolism , Reperfusion/methods , Vaccinium myrtillus
17.
Biomed Res Int ; 2015: 801353, 2015.
Article in English | MEDLINE | ID: mdl-26509162

ABSTRACT

The incidence of squamous cell carcinoma of the conjunctiva is particularly high in sub-Saharan Africa with temporal trends similar to those of Kaposi sarcoma (KS). Human herpesvirus type 8 (HHV8), has not yet been investigated in conjunctiva tumors. In this study biopsies and PBMCs of conjunctiva neoplasia patients along with nonneoplastic conjunctiva tissues have been analyzed for HHV8 sequences by PCR targeting ORF26. All amplimers were subjected to nucleotide sequencing followed by phylogenetic analysis. HHV8 DNA has been identified in 12 out of 48 (25%) HIV-positive, and in 2 out of 24 (8.3%) HIV-negative conjunctiva neoplastic tissues and in 4 out of 33 (12.1%) PBMC samples from conjunctiva neoplasia diseased patients as well as in 4 out of 60 (6.7%) nontumor conjunctiva tissues. The viral load ranged from 1 to 400 copies/10(5) cells. Phylogenetic analysis showed that the majority of HHV8 ORF26 amplimers clustered with subtypes R (n = 11) and B2 (n = 6). This variant distribution is in agreement with that of HHV8 variants previously identified in Ugandan KS cases. The presence of HHV8 in conjunctiva tumors from HIV-positive patients warrants further studies to test whether HHV8 products released by infected cells may have paracrine effects on the growth of conjunctiva lesions.


Subject(s)
Carcinoma, Squamous Cell/genetics , Conjunctiva/virology , Conjunctival Neoplasms/genetics , HIV Infections/genetics , Phylogeny , Adult , Biopsy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/virology , Conjunctiva/pathology , Conjunctival Neoplasms/pathology , Conjunctival Neoplasms/virology , Female , HIV Infections/pathology , HIV Infections/virology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/isolation & purification , Herpesvirus 8, Human/pathogenicity , Humans , Male , Middle Aged , Uganda , Viral Load/genetics
SELECTION OF CITATIONS
SEARCH DETAIL