ABSTRACT
Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.
Subject(s)
Acyl Carrier Protein , Fatty Acids , Saccharomyces cerevisiae , Acyl Carrier Protein/chemistry , Catalytic Domain , Fatty Acids/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolismABSTRACT
Fatty acid synthases (FASs) are central to metabolism but are also of biotechnological interest for the production of fine chemicals and biofuels from renewable resources. During fatty acid synthesis, the growing fatty acid chain is thought to be shuttled by the dynamic acyl carrier protein domain to several enzyme active sites. Here, we report the discovery of a γ subunit of the 2.6 megadalton α6-ß6S. cerevisiae FAS, which is shown by high-resolution structures to stabilize a rotated FAS conformation and rearrange ACP domains from equatorial to axial positions. The γ subunit spans the length of the FAS inner cavity, impeding reductase activities of FAS, regulating NADPH turnover by kinetic hysteresis at the ketoreductase, and suppressing off-pathway reactions at the enoylreductase. The γ subunit delineates the functional compartment within FAS. As a scaffold, it may be exploited to incorporate natural and designed enzymatic activities that are not present in natural FAS.
Subject(s)
Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Acyltransferases/metabolism , Binding Sites , Catalytic Domain , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , Fatty Acids/biosynthesis , Fatty Acids/chemistry , Models, Molecular , Protein Subunits/chemistry , Protein Subunits/isolation & purification , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity RelationshipABSTRACT
The spliceosome is a highly dynamic macromolecular complex that precisely excises introns from pre-mRNA. Here we report the cryo-EM 3D structure of the human Bact spliceosome at 3.4 Å resolution. In the Bact state, the spliceosome is activated but not catalytically primed, so that it is functionally blocked prior to the first catalytic step of splicing. The spliceosomal core is similar to the yeast Bact spliceosome; important differences include the presence of the RNA helicase aquarius and peptidyl prolyl isomerases. To examine the overall dynamic behavior of the purified spliceosome, we developed a principal component analysis-based approach. Calculating the energy landscape revealed eight major conformational states, which we refined to higher resolution. Conformational differences of the highly flexible structural components between these eight states reveal how spliceosomal components contribute to the assembly of the spliceosome, allowing it to generate a dynamic interaction network required for its subsequent catalytic activation.
Subject(s)
Molecular Dynamics Simulation , Spliceosomes/chemistry , HeLa Cells , Humans , Spliceosomes/metabolism , Spliceosomes/ultrastructureABSTRACT
Little is known about the spliceosome's structure before its extensive remodeling into a catalytically active complex. Here, we report a 3D cryo-EM structure of a pre-catalytic human spliceosomal B complex. The U2 snRNP-containing head domain is connected to the B complex main body via three main bridges. U4/U6.U5 tri-snRNP proteins, which are located in the main body, undergo significant rearrangements during tri-snRNP integration into the B complex. These include formation of a partially closed Prp8 conformation that creates, together with Dim1, a 5' splice site (ss) binding pocket, displacement of Sad1, and rearrangement of Brr2 such that it contacts its U4/U6 substrate and is poised for the subsequent spliceosome activation step. The molecular organization of several B-specific proteins suggests that they are involved in negatively regulating Brr2, positioning the U6/5'ss helix, and stabilizing the B complex structure. Our results indicate significant differences between the early activation phase of human and yeast spliceosomes.
Subject(s)
Spliceosomes/chemistry , Cell Nucleus/chemistry , Cryoelectron Microscopy , HeLa Cells , Humans , Models, Molecular , RNA-Binding Proteins/chemistry , Ribonucleoproteins, Small Nuclear/chemistry , Saccharomyces cerevisiae/chemistry , Spliceosomes/ultrastructureABSTRACT
Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination.
Subject(s)
Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Biocatalysis , Cryoelectron Microscopy , Humans , Models, Molecular , Saccharomyces cerevisiae Proteins/chemistry , Structure-Activity Relationship , UbiquitinationABSTRACT
Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron1. Alternatively, it can occur through an exon-defined pathway2-5, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5' splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex6,7. Exon definition promotes the splicing of upstream introns2,8,9 and plays a key part in alternative splicing regulation10-16. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5' splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.
Subject(s)
Exons , Introns , RNA Splicing , Spliceosomes , Humans , Alternative Splicing , Cryoelectron Microscopy , Exons/genetics , Introns/genetics , Models, Molecular , RNA Splice Sites/genetics , RNA Splicing/genetics , Spliceosomes/metabolism , Spliceosomes/chemistry , Spliceosomes/ultrastructure , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/ultrastructureABSTRACT
The B complex is a key intermediate stage of spliceosome assembly. To improve the structural resolution of monomeric, human spliceosomal B (hB) complexes and thereby generate a more comprehensive hB molecular model, we determined the cryo-EM structure of B complex dimers formed in the presence of ATP γ S. The enhanced resolution of these complexes allows a finer molecular dissection of how the 5' splice site (5'ss) is recognized in hB, and new insights into molecular interactions of FBP21, SNU23 and PRP38 with the U6/5'ss helix and with each other. It also reveals that SMU1 and RED are present as a heterotetrameric complex and are located at the interface of the B dimer protomers. We further show that MFAP1 and UBL5 form a 5' exon binding channel in hB, and elucidate the molecular contacts stabilizing the 5' exon at this stage. Our studies thus yield more accurate models of protein and RNA components of hB complexes. They further allow the localization of additional proteins and protein domains (such as SF3B6, BUD31 and TCERG1) whose position was not previously known, thereby uncovering new functions for B-specific and other hB proteins during pre-mRNA splicing.
Subject(s)
RNA Splicing , Spliceosomes , Humans , Spliceosomes/genetics , Cryoelectron Microscopy , RNA Splice Sites , Exons , RNA Precursors/genetics , RNA Precursors/metabolism , Transcriptional Elongation Factors/genetics , Nuclear Proteins/metabolismABSTRACT
Human spliceosomes contain numerous proteins absent in yeast, whose functions remain largely unknown. Here we report a 3D cryo-EM structure of the human spliceosomal C complex at 3.4 Å core resolution and 4.5-5.7 Å at its periphery, and aided by protein crosslinking we determine its molecular architecture. Our structure provides additional insights into the spliceosome's architecture between the catalytic steps of splicing, and how proteins aid formation of the spliceosome's catalytically active RNP (ribonucleoprotein) conformation. It reveals the spatial organization of the metazoan-specific proteins PPWD1, WDR70, FRG1, and CIR1 in human C complexes, indicating they stabilize functionally important protein domains and RNA structures rearranged/repositioned during the Bact to C transition. Structural comparisons with human Bact, C∗, and P complexes reveal an intricate cascade of RNP rearrangements during splicing catalysis, with intermediate RNP conformations not found in yeast, and additionally elucidate the structural basis for the sequential recruitment of metazoan-specific spliceosomal proteins.
Subject(s)
RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , Spliceosomes/metabolism , Animals , Catalysis , HeLa Cells , Humans , Introns/genetics , Models, Molecular , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Binding , Protein Stability , RNA/chemistry , RNA/metabolism , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/metabolism , Species Specificity , Time FactorsABSTRACT
During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.
Subject(s)
DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Splicing , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Spliceosomes/enzymology , Actins/genetics , Adenosine/metabolism , Binding Sites , Cryoelectron Microscopy , DEAD-box RNA Helicases/ultrastructure , Models, Molecular , Mutation , Protein Domains , RNA Precursors/metabolism , RNA Precursors/ultrastructure , RNA Splicing/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Spliceosomes/chemistry , Spliceosomes/metabolismABSTRACT
Single-particle electron cryo-microscopy (cryo-EM) is a powerful method for solving the three-dimensional structures of biological macromolecules. The technological development of transmission electron microscopes, detectors and automated procedures in combination with user-friendly image processing software and ever-increasing computational power have made cryo-EM a successful and expanding technology over the past decade1. At resolutions better than 4 Å, atomic model building starts to become possible, but the direct visualization of true atomic positions in protein structure determination requires much higher (better than 1.5 Å) resolution, which so far has not been attained by cryo-EM. The direct visualization of atom positions is essential for understanding the mechanisms of protein-catalysed chemical reactions, and for studying how drugs bind to and interfere with the function of proteins2. Here we report a 1.25 Å-resolution structure of apoferritin obtained by cryo-EM with a newly developed electron microscope that provides, to our knowledge, unprecedented structural detail. Our apoferritin structure has almost twice the 3D information content of the current world record reconstruction (at 1.54 Å resolution3). We can visualize individual atoms in a protein, see density for hydrogen atoms and image single-atom chemical modifications. Beyond the nominal improvement in resolution, we also achieve a substantial improvement in the quality of the cryo-EM density map, which is highly relevant for using cryo-EM in structure-based drug design.
Subject(s)
Apoferritins/chemistry , Apoferritins/ultrastructure , Cryoelectron Microscopy/instrumentation , Cryoelectron Microscopy/standards , Hydrogen/chemistry , Cryoelectron Microscopy/methods , Drug Design , Humans , Models, Molecular , Quality ControlABSTRACT
The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing1. Stable addition of U2 during early spliceosome formation requires the DEAD-box ATPase PRP52-7. Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL)8, but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers9, contains a HEAT domain (SF3B1HEAT) with an open conformation in isolated SF3b10, but a closed conformation in spliceosomes11, which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure of the human 17S U2 snRNP at a core resolution of 4.1 Å and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1HEAT interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1HEAT. Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.
Subject(s)
Cryoelectron Microscopy , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/ultrastructure , Base Sequence , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , HeLa Cells , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Binding , Protein Conformation , RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , Ribonucleoprotein, U2 Small Nuclear/genetics , Ribonucleoprotein, U2 Small Nuclear/metabolism , Trans-Activators/chemistry , Trans-Activators/metabolismABSTRACT
BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease resulting in decreased quality of life. Histamine and specifically the H4 receptor play a key role in the inflammatory process in AD and serve as targets for novel therapeutic approaches. OBJECTIVE: In the present study we aimed to elucidate the immunopathological mechanisms with which the H4 receptor impacts TH2 cells and contributes to AD pathophysiology. METHODS: Total CD4+ T cells obtained from healthy or AD individuals and in vitro differentiated TH2 cells were cultured under different conditions and the mRNA expression or protein production of target molecules were determined using quantitative real-time PCR and ELISA. RESULTS: H4 receptor mRNA expression was upregulated concentration dependent upon IL-4 stimulation in in vitro differentiated TH2 cells progressively during the differentiation. Transcriptomic analysis of in vitro differentiated TH2 versus TH1 cells revealed that the H4 receptor among other genes represents one of the highly upregulated genes in TH2 cells. Most importantly, increased amounts of IL-5 and IL-13 mRNA expression were detected in in vitro differentiated TH2 cells as well as protein secretion in the presence of histamine or of the H4 receptor-selective-agonist when compared to the untreated control. CONCLUSION: We show for the first time an H4 receptor dependent upregulation of the pro-inflammatory cytokines IL-5 and IL-13 in human TH2 cells by histamine. This suggests that the blockade of the H4 receptor may lead to downregulation of these cytokines and amelioration of AD symptoms as reported in first clinical studies.
Subject(s)
Dermatitis, Atopic , Interleukin-13 , Interleukin-5 , Receptors, Histamine H4 , Th2 Cells , Humans , Th2 Cells/immunology , Th2 Cells/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Interleukin-13/metabolism , Interleukin-5/metabolism , Receptors, Histamine H4/metabolism , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Cells, CulturedABSTRACT
Motivated by strategies for targeted microfluidic transport of droplets, we investigate how sessile droplets can be steered toward a preferred direction using travelling waves in substrate wettability or deformations of the substrate. To perform our numerical study, we implement the boundary-element method to solve the governing Stokes equations for the fluid flow field inside the moving droplet. In both cases we find two distinct modes of droplet motion. For small wave speed the droplet surfs with a constant velocity on the wave, while beyond a critical wave speed a periodic wobbling motion occurs, the period of which diverges at the transition. These observation can be rationalized by the nonuniform oscillator model and the transition described by a SNIPER bifurcation. For the travelling waves in wettability the mean droplet velocity in the wobbling state decays with the inverse wave speed. In contrast, for travelling-wave deformations of the substrate it is proportional to the wave speed at large speed values since the droplet always has to move up and down. To rationalize this behavior, the nonuniform oscillator model has to be extended. Since the critical wave speed of the bifurcation depends on the droplet radius, this dependence can be used to sort droplets by size.
ABSTRACT
By patterning activity in space, one can control active turbulence. To show this, we use Doi's hydrodynamic equations of a semidilute solution of active rods. A linear stability analysis reveals the resting isotropic fluid to be unstable above an absolute pusher activity. The emergent activity-induced paranematic state displays active turbulence, which we characterize by different quantities including the energy spectrum, which shows the typical power-law decay with exponent -4. Then, we control the active turbulence by a square lattice of circular spots where activity is switched off. In the parameter space lattice constant versus surface-to-surface distance of the spots, we identify different flow states. Most interestingly, for lattice constants below the vorticity correlation length and for spot distances smaller than the nematic coherence length, we observe a multi-lane flow state, where flow lanes with alternating flow directions are separated by a street of vortices. The flow pattern displays pronounced multistability and also appears transiently at the transition to the isotropic active-turbulence state. At larger lattice constants a trapped vortex state is identified with a non-Gaussian vorticity distribution due to the low flow vorticity at the spots. It transitions to conventional active turbulence for increasing spot distance.
ABSTRACT
The mitotic checkpoint complex (MCC) coordinates proper chromosome biorientation on the spindle with ubiquitination activities of CDC20-activated anaphase-promoting complex/cyclosome (APC/C(CDC20)). APC/C(CDC20) and two E2s, UBE2C and UBE2S, catalyze ubiquitination through distinct architectures for linking ubiquitin (UB) to substrates and elongating polyUB chains, respectively. MCC, which contains a second molecule of CDC20, blocks APC/C(CDC20)-UBE2C-dependent ubiquitination of Securin and Cyclins, while differentially determining or inhibiting CDC20 ubiquitination to regulate spindle surveillance, checkpoint activation, and checkpoint termination. Here electron microscopy reveals conformational variation of APC/C(CDC20)-MCC underlying this multifaceted regulation. MCC binds APC/C-bound CDC20 to inhibit substrate access. However, rotation about the CDC20-MCC assembly and conformational variability of APC/C modulate UBE2C-catalyzed ubiquitination of MCC's CDC20 molecule. Access of UBE2C is limiting for subsequent polyubiquitination by UBE2S. We propose that conformational dynamics of APC/C(CDC20)-MCC modulate E2 activation and determine distinctive ubiquitination activities as part of a response mechanism ensuring accurate sister chromatid segregation.
Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase-Promoting Complex-Cyclosome/ultrastructure , Chromosome Segregation , Cryoelectron Microscopy , M Phase Cell Cycle Checkpoints , Spindle Apparatus/metabolism , Spindle Apparatus/ultrastructure , Ubiquitin/metabolism , Binding Sites , Cdc20 Proteins/metabolism , Cdc20 Proteins/ultrastructure , Humans , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/ultrastructure , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/ultrastructure , UbiquitinationABSTRACT
Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2-GTP-Met-tRNAiMet and eIF3. The 'open' 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The 'closed' form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.
Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Codon, Initiator/metabolism , Eukaryotic Initiation Factor-1/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-3/metabolism , Humans , Mammals/genetics , Peptide Chain Initiation, Translational , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolismABSTRACT
Bis(benzimidazol-2-yl)amine scaffold is not present in dipeptidyl peptidase-4 (DPP-4) inhibitors published so far. Herein, the inhibitory potential of bis(benzimidazol-2-yl)amine derivatives against DPP-4 was evaluated. In non-competitive inhibition mode, three representatives 5, 6, and 7 inhibited DPP-4 inâ vitro with IC50 values below 50â µM. The assessed binding pocket of DPP-4 for these benzimidazoles includes the S2 extensive subsite's residues Phe357 and Arg358. None of the lead compounds showed cytotoxicity to human neuroblastoma SH-SY5Y cells at concentrations lower than 10â µM. None showed significant binding affinity at dopamine D2, D3, and histamine H1, H3 receptors, at concentrations lower than 10â µM, leading to preferable outcomes due to mutually opposite effects of these neurotransmitters on each other. The potential beneficial effects on dopamine synthesis and the survival of dopaminergic neurons could be mediated by DPP-4 inhibition. These effective noncompetitive DPP-4 inhibitors, with inhibitory potential better than reference diprotin A (relative inhibitory potency compared to diprotin A is 3.39 and 1.54 for compounds 7 and 5, respectively), with the absence of cytotoxicity to SH-SY5Y cells, are valuable candidates for further evaluation for the treatment of diabetes and associated disruption of neuronal homeostasis.
Subject(s)
Benzimidazoles , Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Amines/chemistry , Amines/pharmacology , Amines/chemical synthesis , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dose-Response Relationship, Drug , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Molecular Structure , Structure-Activity RelationshipABSTRACT
Dopamine D2-like receptors, especially D2 and D3 receptor subtypes, are important targets of antipsychotic agents. Many of these antipsychotics share an aliphatic linker element between a protonable amine group and an acyl-like moiety. Here, we have modified this aliphatic linker into phenylmethyl and phenylethyl linkers substituted in different positions. The design, synthesis, and in vitro evaluation of 18 dopamine D2 and D3 receptor ligands were performed in this study. Using a radioligand displacement assay, all ligands were found to have modest nanomolar affinity to D2R and D3R. N-(4-{2-[4-(2-Methoxyphenyl)piperazin-1-yl]ethyl}phenyl)acetamide (6c) demonstrates the highest D3R and D2R affinity values (pKi values of 7.83 [D2R] and 8.04 [D3R]), featuring a slight preference to D3R. This derivative can be taken as a reference structure for the development of a new class of D2R and D3R ligands.
Subject(s)
Receptors, Dopamine D2 , Receptors, Dopamine D3 , Ligands , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Structure-Activity Relationship , Humans , Molecular Structure , Radioligand Assay , Antipsychotic Agents/pharmacology , Antipsychotic Agents/chemical synthesis , Antipsychotic Agents/chemistry , Animals , Dose-Response Relationship, DrugABSTRACT
OBJECTIVE: Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS: The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS: Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 µM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS: These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.
Subject(s)
Chalcones , Histamine , Mice , Humans , Animals , Histamine/metabolism , Neuroinflammatory Diseases , Flavonoids/pharmacology , Flavonoids/therapeutic use , Chalcones/metabolism , Chalcones/pharmacology , Chalcones/therapeutic use , Microglia/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Receptors, Histamine/metabolism , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Inflammation/drug therapy , Inflammation/metabolismABSTRACT
In recent years, nonlinear microfluidics in combination with lab-on-a-chip devices has opened a new avenue for chemical and biomedical applications such as droplet formation and cell sorting. In this article, we integrate ideas from active matter into a microfluidic setting, where two fluid layers with identical densities but different viscosities flow through a microfluidic channel. Most importantly, the fluid interface is laden with active particles that act with dipolar forces on the adjacent fluids and thereby generate flows. We perform lattice-Boltzmann simulations and combine them with phase field dynamics of the interface and an advection-diffusion equation for the density of active particles. We show that only contractile force dipoles can destabilize the flat fluid interface. It develops a viscous finger from which droplets break up. For interfaces with non-zero surface tension, a critical value of activity equal to the surface tension is necessary to trigger the instability. Since activity depends on the density of force dipoles, the interface can develop steady deformation. Lastly, we demonstrate how to control droplet formation using switchable activity.