Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 168(6): 1041-1052.e18, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28283060

ABSTRACT

Most secreted growth factors and cytokines are functionally pleiotropic because their receptors are expressed on diverse cell types. While important for normal mammalian physiology, pleiotropy limits the efficacy of cytokines and growth factors as therapeutics. Stem cell factor (SCF) is a growth factor that acts through the c-Kit receptor tyrosine kinase to elicit hematopoietic progenitor expansion but can be toxic when administered in vivo because it concurrently activates mast cells. We engineered a mechanism-based SCF partial agonist that impaired c-Kit dimerization, truncating downstream signaling amplitude. This SCF variant elicited biased activation of hematopoietic progenitors over mast cells in vitro and in vivo. Mouse models of SCF-mediated anaphylaxis, radioprotection, and hematopoietic expansion revealed that this SCF partial agonist retained therapeutic efficacy while exhibiting virtually no anaphylactic off-target effects. The approach of biasing cell activation by tuning signaling thresholds and outputs has applications to many dimeric receptor-ligand systems.


Subject(s)
Anaphylaxis/metabolism , Hematopoietic Stem Cells/immunology , Mast Cells/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction , Stem Cell Factor/metabolism , Anaphylaxis/immunology , Animals , Dimerization , Humans , Mast Cells/immunology , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Engineering , Proto-Oncogene Proteins c-kit/agonists , Proto-Oncogene Proteins c-kit/chemistry , Stem Cell Factor/chemistry , Stem Cell Factor/genetics
2.
Nat Immunol ; 20(11): 1435-1443, 2019 11.
Article in English | MEDLINE | ID: mdl-31591569

ABSTRACT

Allergic skin diseases, such as atopic dermatitis, are clinically characterized by severe itching and type 2 immunity-associated hypersensitivity to widely distributed allergens, including those derived from house dust mites (HDMs). Here we found that HDMs with cysteine protease activity directly activated peptidergic nociceptors, which are neuropeptide-producing nociceptive sensory neurons that express the ion channel TRPV1 and Tac1, the gene encoding the precursor for the neuropeptide substance P. Intravital imaging and genetic approaches indicated that HDM-activated nociceptors drive the development of allergic skin inflammation by inducing the degranulation of mast cells contiguous to such nociceptors, through the release of substance P and the activation of the cationic molecule receptor MRGPRB2 on mast cells. These data indicate that, after exposure to HDM allergens, activation of TRPV1+Tac1+ nociceptor-MRGPRB2+ mast cell sensory clusters represents a key early event in the development of allergic skin reactions.


Subject(s)
Allergens/immunology , Dermatitis, Atopic/immunology , Mast Cells/immunology , Nociceptors/immunology , Pyroglyphidae/immunology , Animals , Cell Communication/immunology , Dermatitis, Atopic/pathology , Disease Models, Animal , Female , Humans , Male , Mast Cells/metabolism , Mice, Knockout , Nociceptors/metabolism , Receptors, G-Protein-Coupled/metabolism , Skin/cytology , Skin/immunology , TRPV Cation Channels/metabolism , Tachykinins/genetics , Tachykinins/metabolism
3.
Immunity ; 53(4): 793-804.e9, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32910906

ABSTRACT

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.


Subject(s)
Adaptive Immunity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Staphylococcal Infections/immunology , Staphylococcal Skin Infections/immunology , Staphylococcus aureus/immunology , Allergens/immunology , Animals , Female , Hypersensitivity/immunology , Hypersensitivity/microbiology , Mast Cells/microbiology , Mice , Mice, Inbred C57BL , Skin/immunology , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Skin Infections/microbiology
4.
Nat Immunol ; 17(12): 1361-1372, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27798618

ABSTRACT

Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders.


Subject(s)
Gram-Negative Bacterial Infections/immunology , Guanine Nucleotide Exchange Factors/metabolism , Heme/metabolism , Hemolysis/immunology , Macrophages/immunology , Phagocytosis , Sepsis/immunology , Animals , Anti-Bacterial Agents/therapeutic use , Cytoskeleton/metabolism , Female , Gram-Negative Bacterial Infections/drug therapy , Guanine Nucleotide Exchange Factors/genetics , Heme Oxygenase-1/genetics , Hemolysis/drug effects , Humans , Immune Evasion , Macrophages/drug effects , Macrophages/microbiology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis/drug effects , Quinine/therapeutic use , RAW 264.7 Cells , Sepsis/drug therapy , cdc42 GTP-Binding Protein/metabolism
6.
PLoS Pathog ; 17(4): e1009487, 2021 04.
Article in English | MEDLINE | ID: mdl-33905460

ABSTRACT

Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.


Subject(s)
Influenza, Human/immunology , Lipocalin-2/metabolism , Microbiota/immunology , Transcriptome , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Gastrointestinal Microbiome , Homeostasis , Humans , Immunity , Influenza, Human/virology , Lipocalin-2/genetics , Lung/immunology , Lung/virology , Lymphocyte Activation , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
7.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: mdl-34244315

ABSTRACT

RATIONALE: Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes. OBJECTIVES: To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function. METHODS: We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling. MEASUREMENTS AND MAIN RESULTS: We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power. CONCLUSION: Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.


Subject(s)
Lung Transplantation , Microbiota , Allografts , Cohort Studies , Humans , Lung , RNA, Ribosomal, 16S/genetics , Retrospective Studies
8.
Allergy ; 77(2): 499-512, 2022 02.
Article in English | MEDLINE | ID: mdl-33840121

ABSTRACT

BACKGROUND: In contrast to their clearly defined roles in allergic diseases, the physiologic functions of Immunoglobulin E antibodies (IgEs) and mast cells (MCs) remain enigmatic. Recent research supports the toxin hypothesis, showing that MCs and IgE-related type 2 immune responses can enhance host defense against certain noxious substances, including honeybee venom (BV). However, the mechanisms by which MCs can interfere with BV toxicity are unknown. In this study, we assessed the role of IgE and certain MC products in MC-mediated BV detoxification. METHODS: We applied in vitro and in vivo fluorescence microscopyimaging, and flow cytometry, fibroblast-based toxicity assays and mass spectrometry to investigate IgE-mediated detoxification of BV cytotoxicity by mouse and human MCs in vitro. Pharmacologic strategies to interfere with MC-derived heparin and proteases helped to define the importance of specific detoxification mechanisms. RESULTS: Venom-specific IgE increased the degranulation and cytokine responses of MCs to BV in vitro. Passive serum sensitization enhanced MC degranulation in vivo. IgE-activated mouse or human MCs exhibited enhanced potential for detoxifying BV by both proteolytic degradation and heparin-related interference with toxicity. Mediators released by IgE-activated human MCs efficiently degraded multiple BV toxins. CONCLUSIONS: Our results both reveal that IgE sensitization enhances the MC's ability to detoxify BV and also assign efficient toxin-neutralizing activity to MC-derived heparin and proteases. Our study thus highlights the potential importance of IgE, MCs, and particular MC products in defense against BV.


Subject(s)
Bee Venoms , Mast Cells , Allergens/metabolism , Animals , Cell Degranulation , Heparin/metabolism , Humans , Immunoglobulin E , Mice , Peptide Hydrolases/metabolism
9.
Immunity ; 39(5): 963-75, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24210352

ABSTRACT

Allergies are widely considered to be misdirected type 2 immune responses, in which immunoglobulin E (IgE) antibodies are produced against any of a broad range of seemingly harmless antigens. However, components of insect venoms also can sensitize individuals to develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. We found that mice injected with amounts of honeybee venom similar to that which could be delivered in one or two stings developed a specific type 2 immune response that increased their resistance to subsequent challenge with potentially lethal amounts of the venom. Our data indicate that IgE antibodies and the high affinity IgE receptor, FcεRI, were essential for such acquired resistance to honeybee venom. The evidence that IgE-dependent immune responses against venom can enhance survival in mice supports the hypothesis that IgE, which also contributes to allergic disorders, has an important function in protection of the host against noxious substances.


Subject(s)
Bee Venoms/toxicity , Hypersensitivity/immunology , Immunoglobulin E/immunology , Anaphylaxis/etiology , Anaphylaxis/immunology , Anaphylaxis/prevention & control , Animals , Bee Venoms/administration & dosage , Bee Venoms/immunology , Bee Venoms/therapeutic use , Desensitization, Immunologic , Dose-Response Relationship, Immunologic , Epitopes , Female , Immunization, Passive , Immunoglobulin E/biosynthesis , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Models, Immunological , Receptors, IgE/immunology , Daboia , Th2 Cells/immunology , Viper Venoms/immunology , Viper Venoms/toxicity
11.
Clin Immunol ; 192: 30-39, 2018 07.
Article in English | MEDLINE | ID: mdl-29608970

ABSTRACT

To improve current mucosal allergen immunotherapy Vibrio cholerae neuraminidase (NA) was evaluated as a novel epithelial targeting molecule for functionalization of allergen-loaded, poly(D,L-lactide-co-glycolide) (PLGA) microparticles (MPs) and compared to the previously described epithelial targeting lectins wheat germ agglutinin (WGA) and Aleuria aurantia lectin (AAL). All targeters revealed binding to Caco-2 cells, but only NA had high binding specificity to α-L fucose and monosialoganglioside-1. An increased transepithelial uptake was found for NA-MPs in a M-cell co-culture model. NA and NA-MPs induced high levels of IFN-γ and IL10 in naive mouse splenocytes and CCL20 expression in Caco-2. Repeated oral gavage of NA-MPs resulted in a modulated, allergen-specific immune response. In conclusion, NA has enhanced M-cell specificity compared to the other targeters. NA functionalized MPs induce a Th1 and T-regulatory driven immune response and avoid allergy effector cell activation. Therefore, it is a promising novel, orally applied formula for allergy therapy.


Subject(s)
Bacterial Proteins/immunology , Hypersensitivity/immunology , Immunologic Factors/immunology , Mouth Diseases/immunology , Neuraminidase/immunology , Allergens/immunology , Allergens/metabolism , Allergens/therapeutic use , Animals , Bacterial Proteins/metabolism , Caco-2 Cells , Cell Line, Tumor , Coculture Techniques , Desensitization, Immunologic/methods , Humans , Hypersensitivity/therapy , Mice, Inbred BALB C , Microspheres , Mouth Diseases/therapy , Neuraminidase/metabolism , Protein Binding , Vibrio cholerae/enzymology
12.
Proc Natl Acad Sci U S A ; 112(46): 14337-42, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26489655

ABSTRACT

Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.


Subject(s)
Adherens Junctions/metabolism , Bacterial Toxins/metabolism , Hemolysin Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Staphylococcal Infections/metabolism , Vasculitis/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM10 Protein , Adherens Junctions/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Bacterial Toxins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Hemolysin Proteins/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Mice, Knockout , Staphylococcal Infections/genetics , Staphylococcal Infections/pathology , Vasculitis/genetics , Vasculitis/microbiology , Vasculitis/pathology
13.
J Allergy Clin Immunol ; 139(2): 584-596.e10, 2017 02.
Article in English | MEDLINE | ID: mdl-27555460

ABSTRACT

BACKGROUND: Conflicting results have been obtained regarding the roles of Fc receptors and effector cells in models of active systemic anaphylaxis (ASA). In part, this might reflect the choice of adjuvant used during sensitization because various adjuvants might differentially influence the production of particular antibody isotypes. OBJECTIVE: We developed an "adjuvant-free" mouse model of ASA and assessed the contributions of components of the "classical" and "alternative" pathways in this model. METHODS: Mice were sensitized intraperitoneally with ovalbumin at weekly intervals for 6 weeks and challenged intraperitoneally with ovalbumin 2 weeks later. RESULTS: Wild-type animals had immediate hypothermia and late-phase intraperitoneal inflammation in this model. These features were reduced in mice lacking the IgE receptor FcεRI, the IgG receptor FcγRIII or the common γ-chain FcRγ. FcγRIV blockade resulted in a partial reduction of inflammation without any effect on hypothermia. Depletion of monocytes/macrophages with clodronate liposomes significantly reduced the hypothermia response. By contrast, depletion of neutrophils or basophils had no significant effects in this ASA model. Both the hypothermia and inflammation were dependent on platelet-activating factor and histamine and were reduced in 2 types of mast cell (MC)-deficient mice. Finally, engraftment of MC-deficient mice with bone marrow-derived cultured MCs significantly exacerbated the hypothermia response and restored inflammation to levels similar to those observed in wild-type mice. CONCLUSION: Components of the classical and alternative pathways contribute to anaphylaxis in this adjuvant-free model, with key roles for MCs and monocytes/macrophages.


Subject(s)
Anaphylaxis/immunology , Cell Movement , Hypothermia/immunology , Leukocytes/immunology , Macrophages/immunology , Mast Cells/immunology , Adjuvants, Immunologic , Animals , Cells, Cultured , Complement Pathway, Alternative , Complement Pathway, Classical , Disease Models, Animal , Humans , Immunization , Mast Cells/transplantation , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, IgE/genetics , Receptors, IgE/metabolism , Receptors, IgG/genetics , Receptors, IgG/metabolism
14.
Trans Am Clin Climatol Assoc ; 128: 193-221, 2017.
Article in English | MEDLINE | ID: mdl-28790503

ABSTRACT

Mast cells and immunoglobulin E (IgE) antibodies are thought to promote health by contributing to host responses to certain parasites, but other beneficial functions have remained obscure. Venoms provoke innate inflammatory responses and pathology reflecting the activities of the contained toxins. Venoms also can induce allergic sensitization and development of venom-specific IgE antibodies, which can predispose some subjects to exhibit anaphylaxis upon subsequent exposure to the relevant venom. We found that innate functions of mast cells, including degradation of venom toxins by mast cell-derived proteases, enhanced survival in mice injected with venoms from the honeybee, two species of scorpion, three species of poisonous snakes, or the Gila monster. We also found that mice injected with sub-lethal amounts of honeybee or Russell's viper venom exhibited enhanced survival after subsequent challenge with potentially lethal amounts of that venom, and that IgE antibodies, FcεRI, and probably mast cells contributed to such acquired resistance.


Subject(s)
Adaptive Immunity/physiology , Immunity, Innate/physiology , Immunoglobulin E/physiology , Mast Cells/physiology , Venoms/toxicity , Animals , Antibodies/immunology
15.
J Allergy Clin Immunol ; 137(1): 246-257.e11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26410782

ABSTRACT

BACKGROUND: Type 2 cytokine-related immune responses associated with development of antigen-specific IgE antibodies can contribute to pathology in patients with allergic diseases and to fatal anaphylaxis. However, recent findings in mice indicate that IgE also can enhance defense against honeybee venom. OBJECTIVE: We tested whether IgE antibodies, IgE-dependent effector mechanisms, and a local anaphylactic reaction to an unrelated antigen can enhance defense against Russell viper venom (RVV) and determined whether such responses can be influenced by immunization protocol or mouse strain. METHODS: We compared the resistance of RVV-immunized wild-type, IgE-deficient, and Fcer1a-deficient mice after injection of a potentially lethal dose of RVV. RESULTS: A single prior exposure to RVV enhanced the ability of wild-type mice, but not mice lacking IgE or functional FcεRI, to survive challenge with a potentially lethal amount of RVV. Moreover, IgE-dependent local passive cutaneous anaphylaxis in response to challenge with an antigen not naturally present in RVV significantly enhanced resistance to the venom. Finally, we observed different effects on resistance to RVV or honeybee venom in BALB/c versus C57BL/6 mice that had received a second exposure to that venom before challenge with a high dose of that venom. CONCLUSION: These observations illustrate the potential benefit of IgE-dependent effector mechanisms in acquired host defense against venoms. The extent to which type 2 immune responses against venoms can decrease pathology associated with envenomation seems to be influenced by the type of venom, the frequency of venom exposure, and the genetic background of the host.


Subject(s)
Anaphylaxis/immunology , Immunoglobulin E/immunology , Receptors, IgE/immunology , Viper Venoms/immunology , Animals , Bee Venoms/immunology , Cell Degranulation , Female , Immunization , Mast Cells/immunology , Mast Cells/physiology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Receptors, IgE/genetics
16.
Clin Immunol ; 173: 10-18, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27789346

ABSTRACT

In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model.


Subject(s)
Anaphylaxis/microbiology , Food Hypersensitivity/microbiology , Microbiota , Administration, Oral , Allergens/administration & dosage , Anaphylaxis/immunology , Animals , Anti-Ulcer Agents/pharmacology , Bacteria/isolation & purification , Cytokines/immunology , Disease Models, Animal , Feces/microbiology , Female , Food Hypersensitivity/immunology , Gastric Acid , Immunization , Immunoglobulin A/immunology , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Intestines/anatomy & histology , Intestines/immunology , Mice, Inbred BALB C , Ovalbumin/administration & dosage , Ovalbumin/blood , Spleen/cytology , Spleen/immunology , Stomach/anatomy & histology , Stomach/immunology , Sucralfate/pharmacology
17.
Allergol Int ; 65(1): 3-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26666482

ABSTRACT

Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This 'bad side' of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells), can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as "misdirected" type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, as well as against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance to reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice which survive an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcɛRI), and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.


Subject(s)
Allergens/immunology , Anaphylaxis/immunology , Bee Venoms/adverse effects , Immunoglobulin E/immunology , Mast Cells/immunology , Anaphylaxis/genetics , Anaphylaxis/metabolism , Anaphylaxis/mortality , Animals , Basophils/immunology , Basophils/metabolism , Disease Resistance , Humans , Hypersensitivity/genetics , Hypersensitivity/immunology , Hypersensitivity/metabolism , Hypersensitivity/mortality , Immunity, Innate , Mast Cells/metabolism , Models, Animal
18.
Sci Adv ; 9(13): eadf4055, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37000885

ABSTRACT

The metalloproteases meprin α and meprin ß are highly expressed in the healthy gut but significantly decreased in inflammatory bowel disease, implicating a protective role in mucosal homeostasis. In the colon, meprin α and meprin ß form covalently linked heterodimers tethering meprin α to the plasma membrane, therefore presenting dual proteolytic activity in a unique enzyme complex. To unravel its function, we applied N-terminomics and identified galectin-3 as the major intestinal substrate for meprin α/ß heterodimers. Galectin-3-deficient and meprin α/ß double knockout mice show similar alterations in their microbiome in comparison to wild-type mice. We further demonstrate that meprin α/ß heterodimers differentially process galectin-3 upon bacterial infection, in germ-free, conventionally housed (specific pathogen-free), or wildling mice, which in turn regulates the bacterial agglutination properties of galectin-3. Thus, the constitutive cleavage of galectin-3 by meprin α/ß heterodimers may play a key role in colon host-microbiome homeostasis.


Subject(s)
Galectin 3 , Metalloendopeptidases , Mice , Animals , Galectin 3/genetics , Galectin 3/metabolism , Metalloproteases/metabolism , Proteolysis , Mice, Knockout , Homeostasis
19.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-37293068

ABSTRACT

Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.

20.
Lab Invest ; 92(10): 1472-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22906983

ABSTRACT

Cromolyn, widely characterized as a 'mast cell stabilizer', has been used in mice to investigate the biological roles of mast cells in vivo. However, it is not clear to what extent cromolyn can either limit the function of mouse mast cells or influence biological processes in mice independently of effects on mast cells. We confirmed that cromolyn (at 10 mg/kg in vivo or 10-100 µM in vitro) can inhibit IgE-dependent mast cell activation in rats in vivo (measuring Evans blue extravasation in passive cutaneous anaphylaxis (PCA) and increases in plasma histamine in passive systemic anaphylaxis (PSA)) and in vitro (measuring peritoneal mast cell (PMC) ß-hexosaminidase release and prostaglandin D(2) synthesis). However, under the conditions tested, cromolyn did not inhibit those mast cell-dependent responses in mice. In mice, cromolyn also failed to inhibit the ear swelling or leukocyte infiltration at sites of PCA. Nor did cromolyn inhibit IgE-independent degranulation of mouse PMCs induced by various stimulators in vitro. At 100 mg/kg, a concentration 10 times higher than that which inhibited PSA in rats, cromolyn significantly inhibited the increases in plasma concentrations of mouse mast cell protease-1 (but not of histamine) during PSA, but had no effect on the reduction in body temperature in this setting. Moreover, this concentration of cromolyn (100 mg/kg) also inhibited LPS-induced TNF production in genetically mast cell-deficient C57BL/6-Kit(W-sh/W-sh) mice in vivo. These results question cromolyn's effectiveness and selectivity as an inhibitor of mast cell activation and mediator release in the mouse.


Subject(s)
Anaphylaxis/drug therapy , Anti-Asthmatic Agents/pharmacology , Cromolyn Sodium/pharmacology , Mast Cells/drug effects , Analysis of Variance , Anaphylaxis/metabolism , Animals , Chemokine CCL2/metabolism , Chymases/blood , Chymases/metabolism , Cromolyn Sodium/therapeutic use , Dose-Response Relationship, Drug , Evans Blue , Extravasation of Diagnostic and Therapeutic Materials , Female , Histamine/blood , Humans , Immunoglobulin E/metabolism , Leukocytes/drug effects , Leukocytes/metabolism , Male , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Passive Cutaneous Anaphylaxis/drug effects , Peritoneum/cytology , Peritoneum/drug effects , Rats , Species Specificity , Tumor Necrosis Factor-alpha/blood , beta-N-Acetylhexosaminidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL