Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Plant Physiol ; 191(1): 233-251, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36200882

ABSTRACT

Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.


Subject(s)
Asteraceae , Flaveria , Flaveria/genetics , Flaveria/metabolism , Phylogeny , Asteraceae/metabolism , Carbon Dioxide/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Photosynthesis/genetics , Plants/metabolism
2.
Plant Physiol ; 182(1): 566-583, 2020 01.
Article in English | MEDLINE | ID: mdl-31611421

ABSTRACT

The Australian grass subtribe Neurachninae contains closely related species that use C3, C4, and C2 photosynthesis. To gain insight into the evolution of C4 photosynthesis in grasses, we examined leaf gas exchange, anatomy and ultrastructure, and tissue localization of Gly decarboxylase subunit P (GLDP) in nine Neurachninae species. We identified previously unrecognized variation in leaf structure and physiology within Neurachne that represents varying degrees of C3-C4 intermediacy in the Neurachninae. These include inverse correlations between the apparent photosynthetic carbon dioxide (CO2) compensation point in the absence of day respiration (C * ) and chloroplast and mitochondrial investment in the mestome sheath (MS), where CO2 is concentrated in C2 and C4 Neurachne species; width of the MS cells; frequency of plasmodesmata in the MS cell walls adjoining the parenchymatous bundle sheath; and the proportion of leaf GLDP invested in the MS tissue. Less than 12% of the leaf GLDP was allocated to the MS of completely C3 Neurachninae species with C * values of 56-61 µmol mol-1, whereas two-thirds of leaf GLDP was in the MS of Neurachne lanigera, which exhibits a newly-identified, partial C2 phenotype with C * of 44 µmol mol-1 Increased investment of GLDP in MS tissue of the C2 species was attributed to more MS mitochondria and less GLDP in mesophyll mitochondria. These results are consistent with a model where C4 evolution in Neurachninae initially occurred via an increase in organelle and GLDP content in MS cells, which generated a sink for photorespired CO2 in MS tissues.


Subject(s)
Plant Leaves/metabolism , Plant Proteins/metabolism , Photosynthesis/genetics , Photosynthesis/physiology , Plant Leaves/physiology , Plant Proteins/genetics , Plasmodesmata/metabolism , Plasmodesmata/physiology , Poaceae/genetics , Poaceae/physiology
3.
Ecol Lett ; 22(2): 302-312, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30557904

ABSTRACT

C4 photosynthesis is a complex trait that boosts productivity in warm environments. Paradoxically, it evolved independently in numerous plant lineages, despite requiring specialised leaf anatomy. The anatomical modifications underlying C4 evolution have previously been evaluated through interspecific comparisons, which capture numerous changes besides those needed for C4 functionality. Here, we quantify the anatomical changes accompanying the transition between non-C4 and C4 phenotypes by sampling widely across the continuum of leaf anatomical traits in the grass Alloteropsis semialata. Within this species, the only trait that is shared among and specific to C4 individuals is an increase in vein density, driven specifically by minor vein development that yields multiple secondary effects facilitating C4 function. For species with the necessary anatomical preconditions, developmental proliferation of veins can therefore be sufficient to produce a functional C4 leaf anatomy, creating an evolutionary entry point to complex C4 syndromes that can become more specialised.


Subject(s)
Photosynthesis , Poaceae , Plant Leaves/anatomy & histology , Plants
4.
BMC Evol Biol ; 16(1): 141, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27356975

ABSTRACT

BACKGROUND: RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. RESULTS: Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in grasses, highlighting the possible importance of maintaining this gene and its surrounding genomic regions. CONCLUSIONS: Findings presented here indicate that the RLSB family originated as a unique gene in land plant evolution, perhaps in the common ancestor of charophytes and higher plants. Purifying selection has maintained this as a highly conserved single- or two-copy gene across most extant species, with several conserved gene duplications. Together with previous findings, this study suggests that RLSB has been sustained as an important regulatory protein throughout the course of land plant evolution. While only RLSB-a has been directly implicated in rbcL regulation in maize, RLSB-b could have an overlapping function in the co-regulation of rbcL, or may have diverged as a regulator of one or more other plastid-encoded mRNAs. This analysis confirms that RLSB is an important and unique photosynthetic regulatory protein that has been continuously expressed in land plants as they emerged and diversified from their ancient common ancestor.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Magnoliopsida/genetics , Plant Proteins/genetics , Plastids/genetics , RNA-Binding Proteins/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Chloroplasts/genetics , Photosynthesis , Phylogeny , Plant Leaves/genetics , Plant Proteins/metabolism , Plastids/metabolism , Poaceae/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Zea mays/genetics
5.
Plant Cell Physiol ; 57(5): 904-18, 2016 May.
Article in English | MEDLINE | ID: mdl-26985020

ABSTRACT

The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.


Subject(s)
Chloroplasts/metabolism , Flaveria/physiology , Photosynthesis , Amino Acid Sequence , Biological Evolution , Carbon Cycle , Flaveria/genetics , Mesophyll Cells/physiology , Plant Leaves/genetics , Plant Leaves/physiology , Species Specificity
6.
J Exp Bot ; 67(10): 3065-78, 2016 05.
Article in English | MEDLINE | ID: mdl-27073202

ABSTRACT

Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S laxum that is sister to S hians We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H aturensis and S hians and to mestome sheath cells of N minor Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H aturensis and S hians are situated centripetally in a pattern identical to C2 eudicots. In S laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S hians This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis.


Subject(s)
Glycine Dehydrogenase (Decarboxylating)/metabolism , Photosynthesis/physiology , Poaceae/physiology , Biological Evolution , Genes, Plant/genetics , Genes, Plant/physiology , Glycine Dehydrogenase (Decarboxylating)/genetics , Phylogeny , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plant Leaves/physiology , Poaceae/cytology , Poaceae/enzymology , Poaceae/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
7.
BMC Evol Biol ; 15: 116, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26084484

ABSTRACT

BACKGROUND: The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). RESULTS: Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). CONCLUSIONS: We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.


Subject(s)
Flaveria/classification , Flaveria/genetics , Phylogeny , Amino Acid Sequence , Biological Evolution , Chloroplasts/genetics , Flaveria/physiology , Photosynthesis , RNA, Plant/analysis , Sequence Analysis, RNA/methods
8.
Plant Physiol ; 163(3): 1266-76, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24064930

ABSTRACT

The evolution of C4 photosynthesis in many taxa involves the establishment of a two-celled photorespiratory CO2 pump, termed C2 photosynthesis. How C3 species evolved C2 metabolism is critical to understanding the initial phases of C4 plant evolution. To evaluate early events in C4 evolution, we compared leaf anatomy, ultrastructure, and gas-exchange responses of closely related C3 and C2 species of Flaveria, a model genus for C4 evolution. We hypothesized that Flaveria pringlei and Flaveria robusta, two C3 species that are most closely related to the C2 Flaveria species, would show rudimentary characteristics of C2 physiology. Compared with less-related C3 species, bundle sheath (BS) cells of F. pringlei and F. robusta had more mitochondria and chloroplasts, larger mitochondria, and proportionally more of these organelles located along the inner cell periphery. These patterns were similar, although generally less in magnitude, than those observed in the C2 species Flaveria angustifolia and Flaveria sonorensis. In F. pringlei and F. robusta, the CO2 compensation point of photosynthesis was slightly lower than in the less-related C3 species, indicating an increase in photosynthetic efficiency. This could occur because of enhanced refixation of photorespired CO2 by the centripetally positioned organelles in the BS cells. If the phylogenetic positions of F. pringlei and F. robusta reflect ancestral states, these results support a hypothesis that increased numbers of centripetally located organelles initiated a metabolic scavenging of photorespired CO2 within the BS. This could have facilitated the formation of a glycine shuttle between mesophyll and BS cells that characterizes C2 photosynthesis.


Subject(s)
Flaveria/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Vascular Bundle/metabolism , Carbon Cycle/genetics , Carbon Cycle/physiology , Carbon Dioxide/metabolism , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Evolution, Molecular , Flaveria/classification , Flaveria/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Helianthus/genetics , Helianthus/metabolism , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondria/ultrastructure , Photosynthesis/genetics , Phylogeny , Plant Leaves/genetics , Plant Leaves/ultrastructure , Plant Vascular Bundle/genetics , Plant Vascular Bundle/ultrastructure , Ribulose-Bisphosphate Carboxylase/metabolism , Species Specificity
9.
Plant Cell Environ ; 37(11): 2587-600, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24689501

ABSTRACT

The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis.


Subject(s)
Carbon/metabolism , Chloroplasts/metabolism , Magnoliopsida/metabolism , Mesophyll Cells/metabolism , Biological Evolution , Cell Separation , Chloroplasts/ultrastructure , Mesophyll Cells/cytology , Mesophyll Cells/ultrastructure , Species Specificity
10.
Front Plant Sci ; 11: 578739, 2020.
Article in English | MEDLINE | ID: mdl-33224166

ABSTRACT

C4 photosynthesis evolved over 65 times, with around 24 origins in the eudicot order Caryophyllales. In the Caryophyllales family Nyctaginaceae, the C4 pathway is known in three genera of the tribe Nyctagineae: Allionia, Okenia and Boerhavia. Phylogenetically, Allionia and Boerhavia/Okenia are separated by three genera whose photosynthetic pathway is uncertain. To clarify the distribution of photosynthetic pathways in the Nyctaginaceae, we surveyed carbon isotope ratios of 159 species of the Nyctaginaceae, along with bundle sheath (BS) cell ultrastructure, leaf gas exchange, and C4 pathway biochemistry in five species from the two C4 clades and closely related C3 genera. All species in Allionia, Okenia and Boerhavia are C4, while no C4 species occur in any other genera of the family, including three that branch between Allionia and Boerhavia. This demonstrates that C4 photosynthesis evolved twice in Nyctaginaceae. Boerhavia species use the NADP-malic enzyme (NADP-ME) subtype of C4 photosynthesis, while Allionia species use the NAD-malic enzyme (NAD-ME) subtype. The BS cells of Allionia have many more mitochondria than the BS of Boerhavia. Bundle sheath mitochondria are closely associated with chloroplasts in Allionia which facilitates CO2 refixation following decarboxylation by mitochondrial NAD-ME. The close relationship between Allionia and Boerhavia could provide insights into why NADP-ME versus NAD-ME subtypes evolve, particularly when coupled to analysis of their respective genomes. As such, the group is an excellent system to dissect the organizational hierarchy of convergent versus divergent traits produced by C4 evolution, enabling us to understand when convergence is favored versus when divergent modifications can result in a common phenotype.

11.
Curr Opin Plant Biol ; 49: 27-34, 2019 06.
Article in English | MEDLINE | ID: mdl-31150949

ABSTRACT

C4 photosynthesis evolved dozens of times, with a critical step being the engagement of a C4 metabolic cycle to concentrate CO2 into a bundle sheath-like compartment. While C3-C4 intermediate species show a progressive increase in the activity of a C4 metabolic cycle, the integration of the C4 and C3 biochemical cycles in enhancing photosynthetic carbon gain occurs in a punctuated manner, at an initial C4 cycle activity near 60%. Punctuated integration of the C4 cycle could result from the evolutionary acquisition of traits that coordinate the C3 and C4 biochemical cycles (for example, an enzymatic, regulatory or transport function) or from a sudden reduction in the mesophyll C3 cycle. Alternatively, a punctuated pattern could be an artifact of low numbers of C3-C4 intermediates in the evolutionary space where C4 cycle engagement occurs, due to incomplete sampling of natural diversity or evolutionary dynamics rendering such intermediates unstable. Understanding how the C4 cycle becomes integrated with the C3 cycle could reveal new avenues for engineering the C4 pathway into C3 plants. Such efforts would be facilitated by the generation of hybrids, or the discovery of additional intermediates, that span the transition from low to high C4 cycle engagement.


Subject(s)
Carbon , Photosynthesis , Biological Evolution , Carbon Dioxide , Plant Leaves , Plants
12.
mBio ; 9(3)2018 05 15.
Article in English | MEDLINE | ID: mdl-29764946

ABSTRACT

Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects.IMPORTANCE Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered, are poorly known with respect to their biology within the insect guts. To understand the genomic features and related biology, we produced the whole-genome sequences of nine gut commensal fungi from disease-bearing insects (black flies, midges, and mosquitoes). The results show that insect gut fungi tend to have low GC content across their genomes. By comparing these commensals with entomopathogenic and free-living fungi that have available genome sequences, we found a universal core gene toolbox that is unique and thus potentially important for the insect-fungus symbiosis. This comparative work also uncovered different host invasion strategies employed by insect pathogens and commensals, as well as a model system to study ancient fungal genome duplication within the gut of insects.


Subject(s)
Fungi/genetics , Genome, Fungal , Insecta/microbiology , Symbiosis , Animals , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/classification , Fungi/isolation & purification , Fungi/physiology , Genomics , Host-Pathogen Interactions , Insecta/genetics , Insecta/physiology , Phylogeny
13.
J Plant Physiol ; 172: 104-19, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25264020

ABSTRACT

Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere.


Subject(s)
Biological Evolution , Carbon Dioxide/metabolism , Carbon/chemistry , Photosynthesis , Plant Physiological Phenomena , Acclimatization , Adaptation, Physiological , Biodiversity
14.
IMA Fungus ; 5(2): 473-86, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25734036

ABSTRACT

The genomes of fungi provide an important resource to resolve issues pertaining to their taxonomy, biology, and evolution. The genomes of Amanita jacksonii, Ceratocystis albifundus, a Fusarium circinatum variant, Huntiella omanensis, Leptographium procerum, Sclerotinia echinophila, and Rutstroemia sydowiana are presented in this genome announcement. These seven genomes are from a number of fungal pathogens and economically important species. The genome sizes range from 27 Mb in the case of Ceratocystis albifundus to 51.9 Mb for Rutstroemia sydowiana. The latter also encodes for a predicted 17 350 genes, more than double that of Ceratocystis albifundus. These genomes will add to the growing body of knowledge of these fungi and provide a value resource to researchers studying these fungi.

SELECTION OF CITATIONS
SEARCH DETAIL