Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Cancer ; 153(5): 1051-1066, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37260355

ABSTRACT

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (ß3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.


Subject(s)
Adenocarcinoma of Lung , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Animals , Mice , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Endothelial Cells/metabolism , Protein Tyrosine Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tyrosine/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Proto-Oncogene Proteins c-met/metabolism
2.
Eur Respir J ; 60(1)2022 07.
Article in English | MEDLINE | ID: mdl-34887322

ABSTRACT

BACKGROUND: Survival after curative resection of early-stage lung adenocarcinoma (LUAD) varies and prognostic biomarkers are urgently needed. METHODS: Large-format tissue samples from a prospective cohort of 200 patients with resected LUAD were immunophenotyped for cancer hallmarks TP53, NF1, CD45, PD-1, PCNA, TUNEL and FVIII, and were followed for a median of 2.34 (95% CI 1.71-3.49) years. RESULTS: Unsupervised hierarchical clustering revealed two patient subgroups with similar clinicopathological features and genotype, but with markedly different survival: "proliferative" patients (60%) with elevated TP53, NF1, CD45 and PCNA expression had 50% 5-year overall survival, while "apoptotic" patients (40%) with high TUNEL had 70% 5-year survival (hazard ratio 2.23, 95% CI 1.33-3.80; p=0.0069). Cox regression and machine learning algorithms including random forests built clinically useful models: a score to predict overall survival and a formula and nomogram to predict tumour phenotype. The distinct LUAD phenotypes were validated in The Cancer Genome Atlas and KMplotter data, and showed prognostic power supplementary to International Association for the Study of Lung Cancer tumour-node-metastasis stage and World Health Organization histologic classification. CONCLUSIONS: Two molecular subtypes of LUAD exist and their identification provides important prognostic information.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Humans , Lung Neoplasms/pathology , Phenotype , Prognosis , Proliferating Cell Nuclear Antigen/genetics , Prospective Studies
3.
Carcinogenesis ; 41(8): 1134-1144, 2020 08 12.
Article in English | MEDLINE | ID: mdl-31740923

ABSTRACT

Increased expression of osteopontin (secreted phosphoprotein 1, SPP1) is associated with aggressive human lung adenocarcinoma (LADC), but its function remains unknown. Our aim was to determine the role of SPP1 in smoking-induced LADC. We combined mouse models of tobacco carcinogen-induced LADC, of deficiency of endogenous Spp1 alleles, and of adoptive pulmonary macrophage reconstitution to map the expression of SPP1 and its receptors and determine its impact during carcinogenesis. Co-expression of Spp1 and mutant KrasG12C in benign cells was employed to investigate SPP1/KRAS interactions in oncogenesis. Finally, intratracheal adenovirus encoding Cre recombinase was delivered to LSL.KRASG12D mice lacking endogenous or overexpressing transgenic Spp1 alleles. SPP1 was overexpressed in experimental and human LADC and portended poor survival. In response to two different smoke carcinogens, Spp1-deficient mice developed fewer and smaller LADC with decreased cellular survival and angiogenesis. Both lung epithelial- and macrophage-secreted SPP1 drove tumor-associated inflammation, while epithelial SPP1 promoted early tumorigenesis by fostering the survival of KRAS-mutated cells. Finally, loss and overexpression of Spp1 was, respectively, protective and deleterious for mice harboring KRASG12D-driven LADC. Our data support that SPP1 is functionally involved in early stages of airway epithelial carcinogenesis driven by smoking and mutant KRAS and may present an important therapeutic target.


Subject(s)
Adenocarcinoma of Lung/pathology , Carcinogenesis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Osteopontin/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Smoking/adverse effects , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Animals , HEK293 Cells , Humans , Lung Neoplasms/chemically induced , Mice , Mice, Inbred C57BL , Mutation , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Osteopontin/genetics
4.
Thorax ; 75(11): 1004-1008, 2020 11.
Article in English | MEDLINE | ID: mdl-32943495

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive cancer, associated with poor prognosis. We assessed the feasibility of patient-derived cell cultures to serve as an ex vivo model of MPM. Patient-derived MPM cell cultures (n=16) exhibited stemness features and reflected intratumour and interpatient heterogeneity. A subset of the cells were subjected to high-throughput drug screening and coculture assays with cancer-specific cytotoxic T cells and showed diverse responses. Some of the biphasic MPM cells were capable of processing and presenting the neoantigen SSX-2 endogenously. In conclusion, patient-derived MPM cell cultures are a promising and faithful ex vivo model of MPM.


Subject(s)
Biomarkers, Tumor/analysis , Mesothelioma, Malignant/pathology , Pleural Neoplasms/pathology , Tumor Cells, Cultured/cytology , Cell Culture Techniques , Genes, Tumor Suppressor , High-Throughput Screening Assays , Humans , Immunotherapy , Mesothelioma, Malignant/therapy , Mutation , Pleural Neoplasms/therapy , Whole Genome Sequencing
5.
Adv Exp Med Biol ; 1225: 53-69, 2020.
Article in English | MEDLINE | ID: mdl-32030647

ABSTRACT

Tobacco smoke is a multicomponent mixture of chemical, organic, and inorganic compounds, as well as additive substances and radioactive materials. Many studies have proved the carcinogenicity of various of these compounds through the induction of DNA adducts, mutational potential, epigenetic changes, gene fusions, and chromosomal events. The tumor microenvironment plays an important role in malignant tumor formation and progression through the regulation of expression of key molecules which mediate the recruitment of immune cells to the tumor site and subsequently regulate tumor growth and metastasis. In this chapter, we discuss the effects of inhaled tobacco smoke in the tumor microenvironment of the respiratory tract. The mechanisms underlying these effects as well as their link with tumor progression are analyzed.


Subject(s)
Lung Neoplasms/pathology , Nicotiana , Smoke/adverse effects , Tumor Microenvironment/drug effects , Disease Progression , Humans , Nicotiana/adverse effects , Tobacco Smoke Pollution/adverse effects
6.
Proc Natl Acad Sci U S A ; 114(49): 12994-12999, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29150554

ABSTRACT

IL-22 has been identified as a cancer-promoting cytokine that is secreted by infiltrating immune cells in several cancer models. We hypothesized that IL-22 regulation would occur at the interface between cancer cells and immune cells. Breast and lung cancer cells of murine and human origin induced IL-22 production from memory CD4+ T cells. In the present study, we found that IL-22 production in humans is dependent on activation of the NLRP3 inflammasome with the subsequent release of IL-1ß from both myeloid and T cells. IL-1 receptor signaling via the transcription factors AhR and RORγt in T cells was necessary and sufficient for IL-22 production. In these settings, IL-1 induced IL-22 production from a mixed T helper cell population comprised of Th1, Th17, and Th22 cells, which was abrogated by the addition of anakinra. We confirmed these findings in vitro and in vivo in two murine tumor models, in primary human breast and lung cancer cells, and in deposited expression data. Relevant to ongoing clinical trials in breast cancer, we demonstrate here that the IL-1 receptor antagonist anakinra abrogates IL-22 production and reduces tumor growth in a murine breast cancer model. Thus, we describe here a previously unrecognized mechanism by which cancer cells induce IL-22 production from memory CD4+ T cells via activation of the NLRP3 inflammasome and the release of IL-1ß to promote tumor growth. These findings may provide the basis for therapeutic interventions that affect IL-22 production by targeting IL-1 activity.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Interleukin-1beta/physiology , Interleukins/biosynthesis , Animals , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Culture Media, Conditioned , Female , Gene Expression Regulation, Neoplastic , Humans , Inflammasomes/metabolism , Interleukins/metabolism , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neoplasm Transplantation , Signal Transduction , Tumor Burden , Interleukin-22
7.
Carcinogenesis ; 40(10): 1240-1250, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-30915466

ABSTRACT

KRAS mutations of lung adenocarcinoma (LADC) are associated with smoking but little is known on other exposure-oncogene associations. Hypothesizing that different inciting agents may cause different driver mutations, we aimed to identify distinct molecular pathways to LADC, applying two entirely different approaches. First, we examined clinicopathologic features and genomic signatures of environmental exposures in the large LADC Campbell data set. Second, we designed a molecular mechanistic risk model of LADC (M3LADC) that links environmental exposure to incidence risk by mathematically emulating the disease process. This model was applied to incidence data of Japanese atom-bomb survivors which contains information on radiation and smoking exposure. Grouping the clinical data by driver mutations revealed two main distinct molecular pathways to LADC: one unique to transmembrane receptor-mutant patients that displayed robust signatures of radiation exposure and one shared between submembrane transducer-mutant patients and patients with no evident driver mutation that carried the signature of smoking. Consistently, best fit of the incidence data was achieved with a M3LADC with two pathways: in one LADC risk increased with radiation exposure and in the other with cigarette consumption. We conclude there are two main molecular pathways to LADC associated with different environmental exposures. Future molecular measurements in lung cancer tissue of atom-bomb survivors may allow to further test quantitatively the M3LADC-predicted link of radiation to transmembrane receptor mutations. Moreover, the developed molecular mechanistic model showed that for low doses, as relevant e.g. for medical imaging, smokers have the same radiation risk compared with never smokers.


Subject(s)
Adenocarcinoma of Lung/etiology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/etiology , Neoplasms, Radiation-Induced/etiology , Radiation Exposure/adverse effects , Smoking/adverse effects , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasms, Radiation-Induced/genetics , Neoplasms, Radiation-Induced/pathology , Nuclear Weapons/statistics & numerical data , Prognosis , Risk Factors , Signal Transduction , Smoking/genetics , Survival Rate , Survivors/statistics & numerical data
8.
Carcinogenesis ; 40(11): 1352-1362, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-30828726

ABSTRACT

Lung adenocarcinoma (LADC) is the leading cause of cancer death worldwide. Nevertheless, syngeneic mouse models of the disease are sparse, and cell lines suitable for transplantable and immunocompetent mouse models of LADC remain unmet needs. We established multiple mouse LADC cell lines by repeatedly exposing two mouse strains (FVB, Balb/c) to the tobacco carcinogens urethane or diethylnitrosamine and by culturing out the resulting lung tumours for prolonged periods of time. Characterization of the resulting cell lines (n = 7) showed that they were immortal and phenotypically stable in vitro, and oncogenic, metastatic and lethal in vivo. The primary tumours that gave rise to the cell lines, as well as secondary tumours generated by transplantation of the cell lines, displayed typical LADC features, such as glandular architecture and mucin and thyroid transcription factor 1 expression. Moreover, these cells exhibited marked molecular similarity with human smokers' LADC, including carcinogen-specific Kras point mutations (KrasQ61R in urethane- and KrasQ61H in diethylnitrosamine-triggered cell lines) and Trp53 deletions and displayed stemness features. Interestingly, all cell lines overexpressed proliferin, a murine prolactin orthologue, which functioned as a lung tumour promoter. Furthermore, prolactin was overexpressed and portended poor prognosis in human LADC. In conclusion, we report the first LADC cell lines derived from mice exposed to tobacco carcinogens. These cells closely resemble human LADC and provide a valuable tool for the functional investigation of the pathobiology of the disease.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Mutation , Prolactin/genetics , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Animals , Carcinogenesis , Carcinogens , Diethylnitrosamine/toxicity , Disease Models, Animal , Genes, ras/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Mice , Thyroid Nuclear Factor 1/genetics , Nicotiana/toxicity , Tumor Suppressor Protein p53/genetics , Urethane/toxicity
9.
J Pathol ; 246(2): 134-140, 2018 10.
Article in English | MEDLINE | ID: mdl-29952003

ABSTRACT

Geminin, a DNA replication licensing inhibitor, ensures faithful DNA replication in vertebrates. Several studies have shown that geminin depletion in vitro results in rereplication and DNA damage, whereas increased expression of geminin has been observed in human cancers. However, conditional inactivation of geminin during embryogenesis has not revealed any detectable DNA replication defects. In order to examine its role in vivo, we conditionally inactivated geminin in the murine colon and lung, and assessed chemically induced carcinogenesis. We show here that mice lacking geminin develop a significantly higher number of tumors and bear a larger tumor burden than sham-treated controls in urethane-induced lung and azoxymethane/dextran sodium sulfate-induced colon carcinogenesis. Survival is also significantly reduced in mice lacking geminin during lung carcinogenesis. A significant increase in the total number and grade of lesions (hyperplasias, adenomas, and carcinomas) was also confirmed by hematoxylin and eosin staining. Moreover, increased genomic aberrations, identified by increased ATR and γH2AX expression, was detected with immunohistochemistry analysis. In addition, we analyzed geminin expression in human colon cancer, and found increased expression, as well as a positive correlation with ATM/ATR levels and a non-monotonic association with γH2AX. Taken together, our data demonstrate that geminin acts as a tumor suppressor by safeguarding genome stability, whereas its overexpression is also associated with genomic instability. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Colonic Neoplasms/genetics , Geminin/genetics , Genes, Tumor Suppressor , Genomic Instability , Lung Neoplasms/genetics , Adenoma/chemically induced , Adenoma/metabolism , Adenoma/pathology , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Azoxymethane , Carcinoma/chemically induced , Carcinoma/metabolism , Carcinoma/pathology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dextran Sulfate , Disease Models, Animal , Geminin/deficiency , Geminin/metabolism , Genetic Predisposition to Disease , Histones/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphorylation , Urethane
10.
Lancet Oncol ; 19(7): 930-939, 2018 07.
Article in English | MEDLINE | ID: mdl-29908990

ABSTRACT

BACKGROUND: The prevalence of malignant pleural effusion is increasing worldwide, but prognostic biomarkers to plan treatment and to understand the underlying mechanisms of disease progression remain unidentified. The PROMISE study was designed with the objectives to discover, validate, and prospectively assess biomarkers of survival and pleurodesis response in malignant pleural effusion and build a score that predicts survival. METHODS: In this multicohort study, we used five separate and independent datasets from randomised controlled trials to investigate potential biomarkers of survival and pleurodesis. Mass spectrometry-based discovery was used to investigate pleural fluid samples for differential protein expression in patients from the discovery group with different survival and pleurodesis outcomes. Clinical, radiological, and biological variables were entered into least absolute shrinkage and selection operator regression to build a model that predicts 3-month mortality. We evaluated the model using internal and external validation. FINDINGS: 17 biomarker candidates of survival and seven of pleurodesis were identified in the discovery dataset. Three independent datasets (n=502) were used for biomarker validation. All pleurodesis biomarkers failed, and gelsolin, macrophage migration inhibitory factor, versican, and tissue inhibitor of metalloproteinases 1 (TIMP1) emerged as accurate predictors of survival. Eight variables (haemoglobin, C-reactive protein, white blood cell count, Eastern Cooperative Oncology Group performance status, cancer type, pleural fluid TIMP1 concentrations, and previous chemotherapy or radiotherapy) were validated and used to develop a survival score. Internal validation with bootstrap resampling and external validation with 162 patients from two independent datasets showed good discrimination (C statistic values of 0·78 [95% CI 0·72-0·83] for internal validation and 0·89 [0·84-0·93] for external validation of the clinical PROMISE score). INTERPRETATION: To our knowledge, the PROMISE score is the first prospectively validated prognostic model for malignant pleural effusion that combines biological and clinical parameters to accurately estimate 3-month mortality. It is a robust, clinically relevant prognostic score that can be applied immediately, provide important information on patient prognosis, and guide the selection of appropriate management strategies. FUNDING: European Respiratory Society, Medical Research Funding-University of Oxford, Slater & Gordon Research Fund, and Oxfordshire Health Services Research Committee Research Grants.


Subject(s)
Cause of Death , Pleural Effusion, Malignant/mortality , Pleural Effusion, Malignant/therapy , Pleurodesis/methods , Adult , Aged , Biomarkers/blood , Cohort Studies , Databases, Factual , Female , Humans , Male , Middle Aged , Pleural Effusion, Malignant/blood , Pleurodesis/mortality , Predictive Value of Tests , Prognosis , Reproducibility of Results , Retrospective Studies , Risk Assessment , Severity of Illness Index , Survival Analysis , Treatment Outcome
11.
Curr Opin Pulm Med ; 23(4): 290-297, 2017 07.
Article in English | MEDLINE | ID: mdl-28403038

ABSTRACT

PURPOSE OF REVIEW: The pathogenesis of lung cancer and pulmonary fibrotic disorders partially overlaps. This review focuses on the common features of the two disease categories, aimed at advancing our translational understanding of their pathobiology and at fostering the development of new therapies. RECENT FINDINGS: Both malignant and collagen-producing lung cells display enhanced cellular proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue microenvironment and inflammation seems to play an important adjuvant role in both types of disorders. SUMMARY: Unraveling the thread of the common and distinct characteristics of lung fibrosis and cancer might contribute to a more comprehensive approach of the pathobiology of both diseases and to a pathfinder for novel and personalized therapeutic strategies.


Subject(s)
Aging/physiology , Lung Neoplasms , Pulmonary Fibrosis , Apoptosis , Carcinogenesis , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/physiopathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology
12.
Eur Respir J ; 47(6): 1842-54, 2016 06.
Article in English | MEDLINE | ID: mdl-27030681

ABSTRACT

Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.


Subject(s)
Cicatrix/pathology , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/pathology , Lung Neoplasms/pathology , Lung/pathology , Animals , Autophagy , Carcinogenesis , Cell Proliferation , Cell Survival , Epigenesis, Genetic , Fibroblasts/cytology , Humans , Inflammation , Lung Diseases/pathology , Mice , Neoplasm Metastasis , Phenotype , Precision Medicine , Signal Transduction
14.
J Immunol ; 187(11): 5703-11, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22048774

ABSTRACT

Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2-3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1-2) or during late promotion and progression stages (weeks 4-16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.


Subject(s)
Carcinogens/toxicity , Cell Transformation, Neoplastic/immunology , Lung Neoplasms/immunology , Macrophages/immunology , Urethane/toxicity , Animals , Cell Separation , Cell Transformation, Neoplastic/chemically induced , Female , Flow Cytometry , Immunohistochemistry , Lung Neoplasms/chemically induced , Male , Mice , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
15.
Am J Respir Crit Care Med ; 186(6): 487-92, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22652027

ABSTRACT

Malignant pleural effusion (MPE) poses a significant clinical problem. Current nonetiologic management is suboptimal in terms of efficacy and safety. In light of recent research progress, we propose herein a new view of MPE development, which may rapidly translate into meaningful changes in therapeutics. In addition to tumor-induced impairment of pleural fluid drainage, pertinent findings point toward another pathway to MPE formation: a vicious loop of interactions between pleural-based tumor cells and the host vasculature and immune system that results in increased net fluid production via enhanced plasma extravasation into the pleural space. The ability of tumor cells to trigger this cascade likely rests on a specific and distinct transcriptional repertoire, which results in important vasoactive events in the pleural space. Although the characterization of tumor-derived factors responsible for MPE development is in the making, an additional, indirect path to MPE was recently demonstrated: tumor cells recruit and co-opt host cells and mediators, which, in turn, amplify tumor cell-primed fluid leakage and impact tumor cell functions. Importantly, recent evidence suggests that the biologic events that culminate in clinical MPE are likely amenable to therapeutic inhibition and even prevention. In this perspective, the scientific basis for an update of current concepts of MPE formation is highlighted. Key questions for future research are posed. Finally, a vision for novel, effective, safe, and convenient treatment modalities that can be offered to outpatients with MPE is set forth.


Subject(s)
Neovascularization, Pathologic/pathology , Pleural Effusion, Malignant/pathology , Pleural Effusion, Malignant/therapy , Pleural Neoplasms/pathology , Pleural Neoplasms/therapy , Animals , Breast Neoplasms/complications , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Clinical Trials, Phase II as Topic , Disease Models, Animal , Female , Humans , Lung Neoplasms/complications , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness/pathology , Pleural Effusion, Malignant/mortality , Pleural Neoplasms/mortality , Prognosis , Risk Assessment , Survival Analysis
16.
Cancers (Basel) ; 15(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36980752

ABSTRACT

Kirsten rat sarcoma virus (KRAS)-mutant cancers are frequent, metastatic, lethal, and largely undruggable. While interleukin (IL)-1ß and nuclear factor (NF)-κB inhibition hold promise against cancer, untargeted treatments are not effective. Here, we show that human KRAS-mutant cancers are addicted to IL-1ß via inflammatory versican signaling to macrophage inhibitor of NF-κB kinase (IKK) ß. Human pan-cancer and experimental NF-κB reporter, transcriptome, and proteome screens reveal that KRAS-mutant tumors trigger macrophage IKKß activation and IL-1ß release via secretory versican. Tumor-specific versican silencing and macrophage-restricted IKKß deletion prevents myeloid NF-κB activation and metastasis. Versican and IKKß are mutually addicted and/or overexpressed in human cancers and possess diagnostic and prognostic power. Non-oncogene KRAS/IL-1ß addiction is abolished by IL-1ß and TLR1/2 inhibition, indicating cardinal and actionable roles for versican and IKKß in metastasis.

17.
Carcinogenesis ; 33(4): 859-67, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22287559

ABSTRACT

Since recent evidence indicates a requirement for epithelial nuclear factor (NF)-κB signaling in lung tumorigenesis, we investigated the impact of the NF-κB inhibitor bortezomib on lung tumor promotion and growth. We used an experimental model in which wild-type mice or mice expressing an NF-κB reporter received intraperitoneal urethane (1 g/kg) followed by twice weekly bortezomib (1 mg/kg) during distinct periods of tumor initiation/progression. Mice were serially assessed for lung NF-κB activation, inflammation and carcinogenesis. Short-term proteasome inhibition with bortezomib did not impact tumor formation but retarded the growth of established lung tumors in mice via effects on cell proliferation. In contrast, long-term treatment with bortezomib resulted in significantly increased lung tumor number and size. This tumor-promoting effect of prolonged bortezomib treatment was associated with perpetuation of urethane-induced inflammation and chronic upregulation of interleukin-1ß and proinflammatory C-X-C motif chemokine ligands (CXCL) 1 and 2 in the lungs. In addition to airway epithelium, bortezomib inhibited NF-κB in pulmonary macrophages in vivo, presenting a possible mechanism of tumor amplification. In this regard, RAW264.7 macrophages exposed to bortezomib showed increased expression of interleukin-1ß, CXCL1 and CXCL2. In conclusion, although short-term bortezomib may exert some beneficial effects, prolonged NF-κB inhibition accelerates chemical lung carcinogenesis by perpetuating carcinogen-induced inflammation. Inhibition of NF-κB in pulmonary macrophages appears to play an important role in this adverse process.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Lung Neoplasms/pathology , NF-kappa B/antagonists & inhibitors , Pyrazines/pharmacology , Animals , Bortezomib , Cell Line , Cell Line, Tumor , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C
18.
Cancers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077838

ABSTRACT

Malignant pleural mesothelioma (MPM) is a rare, incurable cancer of the mesothelial cells lining the lungs and the chest wall that is mainly caused by asbestos inhalation. The molecular mechanisms of mesothelial carcinogenesis are still unclear despite comprehensive studies of the mutational landscape of MPM, and the most frequently mutated genes BAP1, NF2, CDKN2A, TP53, and TSC1 cannot cause MPM in mice in a standalone fashion. Although KRAS pathway alterations were sporadically detected in older studies employing targeted sequencing, they have been largely undetected by next generation sequencing. We recently identified KRAS mutations and copy number alterations in a significant proportion of MPM patients. Here, we review and analyze multiple human datasets and the published literature to show that, in addition to KRAS, multiple other genes of the KRAS pathway are perturbed in a significant proportion of patients with MPM.

19.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 3): 5604-5610, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36742935

ABSTRACT

Aims Diagnosis of Adenotonsillar Hypertrophy (ATH), the leading cause of pediatric Obstructive Sleep Apnea (OSA), depends on physical exam via Brodsky's staging of tonsils. This study investigates the associations of ATH with patient parameters, and balances in-office tonsil hypertrophy appraisal against true organ mass. Materials and Methods A prospective cohort was formed of 103 children operated for ATH, and 31 matched controls. Demographic, clinical and tympanographic data, as well as Complete Blood Count (CBC) indices were compared. Absolute and relative to total body weight tonsil specimen mass were correlated with Brodsky's score. Results Tonsillar size indices were significantly raised in ATH patients. Elevated leukocytes (P = 0.012) and increased neutrophil percentage (P = 0.025) conveyed higher ATH risk. Subjective evaluation of tonsils graded 1 or 2 correlated significantly with absolute (P = 0.001) and relative (P = 0.006) objective measurements. Brodsky's score 3 and 4 displayed marginal significant association with relative (P = 0.050) but not with true (P = 0.989) mass. Conclusion An occult hematologic inflammatory response was detected in ATH children. Clinical estimation of severely hypertrophic tonsils should be adjusted for total body weight. Trial Registration Number: NCT03541434 (clinicaltrials.gov).

20.
Nat Commun ; 13(1): 4557, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931677

ABSTRACT

The high plasticity of lung epithelial cells, has for many years, confounded the correct identification of the cell-of-origin of lung adenocarcinoma (LUAD), one of the deadliest malignancies worldwide. Here, we employ lineage-tracing mouse models to investigate the cell of origin of Eml4-Alk LUAD, and show that Club and Alveolar type 2 (AT2) cells give rise to tumours. We focus on Club cell originated tumours and find that Club cells experience an epigenetic switch by which they lose their lineage fidelity and gain an AT2-like phenotype after oncogenic transformation. Single-cell transcriptomic analyses identified two trajectories of Club cell evolution which are similar to the ones used during lung regeneration, suggesting that lung epithelial cells leverage on their plasticity and intrinsic regeneration mechanisms to give rise to a tumour. Together, this study highlights the role of Club cells in LUAD initiation, identifies the mechanism of Club cell lineage infidelity, confirms the presence of these features in human tumours, and unveils key mechanisms conferring LUAD heterogeneity.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Cell Differentiation/genetics , Cell Transformation, Neoplastic/pathology , Epithelial Cells/pathology , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL