Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 9895, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689131

ABSTRACT

Direct human-caused mortality accounts for about half of all large mammal mortality in North America. For social species like gray wolves (Canis lupus), the death of pack members can disrupt pack structure and cause pack dissolution, and mortality of breeding adults or wolves during reproduction and pup-rearing can decrease pup recruitment. We estimated minimum and maximum probability of wolf pack persistence in Wisconsin, USA, during biological years (15 April-14 April) 2011-2019 and evaluated the influence of pack size and legal harvest mortality on pack persistence during 2012-2014. Harvests comprised 75-161 mortalities within 194 monitored packs during 2012-2014, with 56-74% of packs having no wolves harvested each year. As an index of reproduction during 2013-2019, we also estimated the proportion of packs where pups responded to howl surveys. We evaluated the influence of pack size, legal harvest, and agency removal on reproduction during 2013-2015. Annual maximum pack persistence probability was uniformly high (0.95-1.00), and annual minimum pack persistence probability ranged from 0.86-0.98 with a possible decline during years of harvest. Reproduction was similar in years following harvest and agency removal (2013-2015, pup response = 0.27-0.40), and years without harvest or agency removal the year prior (2016-2019, pup response = 0.28-0.66). Pack size had a positive effect on pack persistence and reproduction. Total number of wolf mortalities and number of adult male and females removed did not influence pack persistence or reproduction. We suggest that low per-pack mortality, timing of harvest and agency removal, and harvest characteristics during 2012-2014 supported stable pack persistence and reproduction.


Subject(s)
Reproduction , Wolves , Wolves/physiology , Animals , Wisconsin , Female , Male , Conservation of Natural Resources/methods , Population Dynamics
2.
PLoS One ; 19(6): e0301487, 2024.
Article in English | MEDLINE | ID: mdl-38865308

ABSTRACT

Management of wolves is controversial in many jurisdictions where wolves live, which underscores the importance of rigor, transparency, and reproducibility when evaluating outcomes of management actions. Treves and Louchouarn 2022 (hereafter TL) predicted outcomes for various fall 2021 hunting scenarios following Wisconsin's judicially mandated hunting and trapping season in spring 2021, and concluded that even a zero harvest scenario could result in the wolf population declining below the population goal of 350 wolves specified in the 1999 Wisconsin wolf management plan. TL further concluded that with a fall harvest of > 16 wolves there was a "better than average possibility" that the wolf population size would decline below that 350-wolf threshold. We show that these conclusions are incorrect and that they resulted from mathematical errors and selected parameterizations that were consistently biased in the direction that maximized mortality and minimized reproduction (i.e., positively biased adult mortality, negatively biased pup survival, further halving pup survival to November, negatively biased number of breeding packs, and counting harvested wolves twice among the dead). These errors systematically exaggerated declines in predicted population size and resulted in erroneous conclusions that were not based on the best available or unbiased science. Corrected mathematical calculations and more rigorous parameterization resulted in predicted outcomes for the zero harvest scenario that more closely coincided with the empirical population estimates in 2022 following a judicially prevented fall hunt in 2021. Only in scenarios with simulated harvest of 300 or more wolves did probability of crossing the 350-wolf population threshold exceed zero. TL suggested that proponents of some policy positions bear a greater burden of proof than proponents of other positions to show that "their estimates are accurate, precise, and reproducible". In their analysis, TL failed to meet this standard that they demanded of others.


Subject(s)
Wolves , Animals , Uncertainty , Wisconsin , Hunting , Conservation of Natural Resources/methods , Population Density , Population Dynamics
3.
Oecologia ; 172(1): 129-40, 2013 May.
Article in English | MEDLINE | ID: mdl-23053233

ABSTRACT

In many species, temporary emigration (TE) is a phenomenon, often indicative of life-history characteristics such as dormancy, skipped reproduction, or partial migration, whereby certain individuals in a population are temporarily unobservable at a particular site. TE may be a flexible condition-dependent strategy that allows individuals to mitigate effects of adverse conditions. Consequently, TE rates ought to be highly variable, but sources of variations are poorly understood for most species. We used data from known-aged female Weddell seals (Leptonychotes weddellii) tagged in Erebus Bay, Antarctica, to investigate sources of variation in TE rates prior to reproduction and to evaluate possible implications for age-specific probability of first reproduction. TE rates were near 1 the year after birth, decreased to an average of 0.15 (SE = 0.01) by age 8, and were similar thereafter. TE rates varied substantially from year-to-year and were lower for seals that attended reproductive colonies the previous year than for seals that did not attend (e.g., ψ(i,age 8)(UU) - ψ(i, age 8)(PU) = 0.22). Recruitment rates were marginally greater for seals that did attend than for seals that did not attend colonies the previous year. For Weddell seals specifically, our results suggest that (1) motivation to attend colonies varied temporally, (2) as seals grew older they had increased motivation to attend even before reproductive maturity, and (3) seals appear to follow various attendance strategies. More broadly, our results support the idea of TE as a variable, condition-dependent strategy, and highlight the utility of TE models for providing population and life-history insights for diverse taxa.


Subject(s)
Animal Migration , Reproduction , Seals, Earless/physiology , Age Factors , Animals , Breeding , Female , Sexual Behavior, Animal
4.
J Anim Ecol ; 81(1): 162-73, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21939440

ABSTRACT

1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies. 2. We tested for demographic buffering in the southern-most breeding mammal population in the world using data collected from 5558 known-age female Weddell seals over 30 years. We first estimated all vital rates simultaneously with mark-recapture analysis and then estimated process variance and covariance in those rates using a hierarchical Bayesian approach. We next calculated the population growth rate's sensitivity to changes in each of the vital rates and tested for evidence of demographic buffering by comparing properly scaled values of sensitivity and process variance in vital rates. 3. We found evidence of positive process covariance between vital rates, which indicates that all vital rates are affected in the same direction by changes in annual environment. Despite the positive correlations, we found strong evidence that demographic buffering occurred through reductions in variation in the vital rates to which population growth rate was most sensitive. Process variation in vital rates was inversely related to sensitivity measures such that variation was greatest in breeding probabilities, intermediate for survival rates of young animals and lowest for survival rates of older animals. 4. Our work contributes to a small but growing set of studies that have used rigorous methods on long-term, detailed data to investigate demographic responses to environmental variation. The information from these studies improves our understanding of life-history evolution in stochastic environments and provides useful information for predicting population responses to future environmental change. Our results for an Antarctic apex predator also provide useful baselines from a marine ecosystem when its top- and middle-trophic levels were not substantially impacted by human activity.


Subject(s)
Demography/methods , Seals, Earless/physiology , Animals , Antarctic Regions , Bayes Theorem , Biological Evolution , Ecosystem , Female , Models, Biological , Population Dynamics
5.
Mov Ecol ; 8: 42, 2020.
Article in English | MEDLINE | ID: mdl-33117543

ABSTRACT

BACKGROUND: Age at maturity and the timing of first breeding are important life history traits. Most small shorebird species mature and breed as 'yearlings', but have lower reproductive success than adults. In some species, yearlings may defer northward migration and remain in non-breeding regions ('oversummering') until they reach 2 years of age. Some adults also oversummer. Oversummering would be favoured by natural selection if survival were as a result raised sufficiently to compensate for the missed breeding opportunity. Several thousand Semipalmated Sandpipers (Calidris pusilla) spend the non-breeding period at Paracas, Perú, including individuals with long bills (likely from eastern Arctic breeding populations ~ 8000 km distant) and short bills (likely from western Arctic breeding populations, up to 11,000 km distant), with short-billed birds more likely to oversummer. We tested the prediction that oversummering birds have higher survival than migrants, and that the magnitude of this higher survival for oversummering birds is enough to compensate for their lost breeding season. METHODS: We used a Multi-State Mark-Recapture model based on 5 years of encounter data (n = 1963 marked birds, and 3229 resightings) obtained year-round at Paracas, Perú, to estimate seasonal (i.e. breeding and non-breeding) survivorship for migrant and oversummering birds. We calculated the magnitude of the oversummering survival advantage required to compensate, for both yearlings and adults, based on published measures of annual survival and reproductive success. Using bill length as a proxy for migration distance, we investigated whether migratory survival is distance-dependent. RESULTS: We estimate that 28% of yearlings and 19% of adults oversummer. Survival is higher for oversummering birds than for migrants, and the oversummering survival advantage is greater for adults (0.215) than for yearlings (0.140). The theoretical thresholds predicted by the size of the missed reproductive opportunity are 0.240 for adults and 0.134 for yearlings. Migratory survival decreases and the oversummering rate increases with migration distance, as assessed by culmen length. CONCLUSIONS: Our results support the life history hypothesis that oversummering raises survival enough to compensate for the loss of a breeding opportunity. Greater migration distance lowers survival and increases the probability of oversummering.

6.
PLoS One ; 9(5): e98064, 2014.
Article in English | MEDLINE | ID: mdl-24846309

ABSTRACT

Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) "grassland breeding" bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980-2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3-21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland habitats into existing agricultural landscapes.


Subject(s)
Biodiversity , Birds , Ecosystem , Grassland , Insecticides/adverse effects , Agriculture , Animals , Conservation of Natural Resources , Models, Theoretical , North America , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL