Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Pharmacol Rev ; 74(4): 1051-1135, 2022 10.
Article in English | MEDLINE | ID: mdl-36180112

ABSTRACT

Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.


Subject(s)
Receptor, Angiotensin, Type 2 , Renin-Angiotensin System , Angiotensins/metabolism , Angiotensins/pharmacology , Binding Sites , Humans , Ligands , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism
2.
Am J Physiol Cell Physiol ; 324(3): C741-C756, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36745527

ABSTRACT

Vasoactive peptides often serve a multitude of functions aside from their direct effects on vasodynamics. This article will review the existing literature on two vasoactive peptides and their involvement in skin homeostasis: adiponectin and-as the main representative of the kallikrein-kinin system-bradykinin. Adiponectin is the most abundantly expressed adipokine in the human organism, where it is mainly localized in fat depots including subcutaneous adipose tissue, from where adiponectin can exert paracrine effects. The involvement of adiponectin in skin homeostasis is supported by a number of studies reporting the effects of adiponectin in isolated human keratinocytes, sebocytes, fibroblasts, melanocytes, and immune cells. Regarding skin pathology, the potential involvement of adiponectin in psoriasis, atopic dermatitis, scleroderma, keloid, and melanogenesis is discussed in this article. The kallikrein-kinin system is composed of a variety of enzymes and peptides, most of which have been identified to be expressed in the skin. This also includes the expression of bradykinin receptors on most skin cells. Bradykinin is one of the very few hormones that is targeted by treatment in routine clinical use in dermatology-in this case for the treatment of hereditary angioedema. The potential involvement of bradykinin in wound healing, psoriasis, and melanoma is further discussed in this article. This review concludes with a call for additional preclinical and clinical studies to further explore the therapeutic potential of adiponectin supplementation (for psoriasis, atopic dermatitis, wound healing, scleroderma, and keloid) or pharmacological interference with the kallikrein-kinin system (for wound healing, psoriasis, and melanoma).


Subject(s)
Adiponectin , Bradykinin , Homeostasis , Kallikrein-Kinin System , Skin Diseases , Skin Physiological Phenomena , Adiponectin/physiology , Kallikrein-Kinin System/physiology , Bradykinin/physiology , Humans , Skin Diseases/metabolism
3.
Clin Sci (Lond) ; 136(10): 799-802, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35621123

ABSTRACT

This commentary on the article "Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors" by Sanja Bosnyak et al. (Clini. Sci. (Lond.) (2011) 121(7): 297-303. https://doi.org/10.1042/CS20110036) summarises the main findings of the study, followed by a discussion of the findings and their relevance for various aspects of the biology of receptors of the renin-angiotensin system in the context of the current state of knowledge.


Subject(s)
Angiotensin II , Receptors, Angiotensin , Angiotensin II/metabolism , Peptides , Receptors, Angiotensin/metabolism , Renin-Angiotensin System
4.
Clin Sci (Lond) ; 134(22): 2987-3006, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33210709

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is responsible for the global corona virus disease 2019 (COVID-19) pandemic enters host cells via a mechanism that includes binding to angiotensin converting enzyme (ACE) 2 (ACE2). Membrane-bound ACE2 is depleted as a result of this entry mechanism. The consequence is that the protective renin-angiotensin system (RAS), of which ACE2 is an essential component, is compromised through lack of production of the protective peptides angiotensin-(1-7) and angiotensin-(1-9), and therefore decreased stimulation of Mas (receptor Mas) and angiotensin AT2-receptors (AT2Rs), while angiotensin AT1-receptors (AT1Rs) are overstimulated due to less degradation of angiotensin II (Ang II) by ACE2. The protective RAS has numerous beneficial actions, including anti-inflammatory, anti-coagulative, anti-fibrotic effects along with endothelial and neural protection; opposite to the deleterious effects caused by heightened stimulation of angiotensin AT1R. Given that patients with severe COVID-19 exhibit an excessive immune response, endothelial dysfunction, increased clotting, thromboses and stroke, enhancing the activity of the protective RAS is likely beneficial. In this article, we discuss the evidence for a dysfunctional protective RAS in COVID and develop a rationale that the protective RAS imbalance in COVID-19 may be corrected by using AT2R agonists. We further review preclinical studies with AT2R agonists which suggest that AT2R stimulation may be therapeutically effective to treat COVID-19-induced disorders of various organ systems such as lung, vasculature, or the brain. Finally, we provide information on the design of a clinical trial in which patients with COVID-19 were treated with the AT2R agonist Compound 21 (C21). This trial has been completed, but results have not yet been reported.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Pneumonia, Viral/virology , Receptor, Angiotensin, Type 2/agonists , ras Proteins/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/drug therapy , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , SARS-CoV-2
5.
Med Res Rev ; 38(2): 602-624, 2018 03.
Article in English | MEDLINE | ID: mdl-28609561

ABSTRACT

The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also presented.


Subject(s)
Receptor, Angiotensin, Type 2/agonists , Small Molecule Libraries/pharmacology , Angiotensin II Type 2 Receptor Blockers/chemistry , Angiotensin II Type 2 Receptor Blockers/pharmacology , Animals , Humans , Ligands
6.
Clin Sci (Lond) ; 132(10): 1055-1067, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29802210

ABSTRACT

Stroke is a devastating disease that afflicts millions of people each year worldwide. Ischemic stroke, which accounts for ~88% of cases, occurs when blood supply to the brain is decreased, often because of thromboembolism or atherosclerotic occlusion. This deprives the brain of oxygen and nutrients, causing immediate, irreversible necrosis within the core of the ischemic area, but more delayed and potentially reversible neuronal damage in the surrounding brain tissue, the penumbra. The only currently approved therapies for ischemic stroke, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) and the endovascular clot retrieval/destruction processes, are aimed at restoring blood flow to the infarcted area, but are only available for a minority of patients and are not able in most cases to completely restore neurological deficits. Consequently, there remains a need for agents that will protect neurones against death following ischemic stroke. Here, we evaluate angiotensin II (Ang II) type 2 (AT2) receptor agonists as a possible therapeutic target for this disease. We first provide an overview of stroke epidemiology, pathophysiology, and currently approved therapies. We next review the large amount of preclinical evidence, accumulated over the past decade and a half, which indicates that AT2 receptor agonists exert significant neuroprotective effects in various animal models, and discuss the potential mechanisms involved. Finally, after discussing the challenges of delivering blood-brain barrier (BBB) impermeable AT2 receptor agonists to the infarcted areas of the brain, we summarize the evidence for and against the development of these agents as a promising therapeutic strategy for ischemic stroke.


Subject(s)
Neuroprotection/physiology , Neuroprotective Agents/therapeutic use , Receptor, Angiotensin, Type 2/agonists , Stroke/drug therapy , Stroke/physiopathology , Animals , Blood-Brain Barrier/metabolism , Humans , Molecular Targeted Therapy/methods , Neuroprotection/drug effects , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Risk Factors , Stroke/etiology
7.
Curr Opin Nephrol Hypertens ; 26(1): 36-42, 2017 01.
Article in English | MEDLINE | ID: mdl-27798458

ABSTRACT

PURPOSE OF REVIEW: Angiotensin II is a main regulator of kidney function. Renal actions mediated by the angiotensin AT1 receptor have been well known for many years. In contrast, several details of angiotensin AT2 receptor actions in kidney physiology and pathophysiology were only described very recently. These findings are reviewed in this article. RECENT FINDINGS: Regarding the role of the angiotensin AT2 receptor in kidney physiology, a major recent finding was that the AT2 receptor-mediated inhibition of Na-H exchanger-3 and Na/K-ATPase in the renal proximal tubules is caused by internalisation of these transporters, thus reducing reabsorption and increasing natriuresis/diuresis. Regarding renal pathology, several studies demonstrated an attenuation of renal injury caused by diabetes or by obesity with or without high-salt diet through anti-inflammatory, antifibrotic, and antioxidative mechanisms. Generally, AT2 receptor expression seems increased and AT2 receptor-mediated effects stronger in female and obese animals. SUMMARY: The recent findings about the role of the angiotensin AT2 receptor in renal health and disease strongly suggest that pharmacological targeting of this receptor with selective agonists is a promising therapeutic strategy for inducing diuresis/natriuresis (also additive to established diuretics) and for the treatment of diabetic nephropathy or kidney disease of other pathogenesis.


Subject(s)
Diabetic Nephropathies/metabolism , Kidney Tubules, Proximal/metabolism , Obesity/metabolism , Receptor, Angiotensin, Type 2/metabolism , Animals , Diabetic Nephropathies/drug therapy , Diuresis , Humans , Natriuresis , Receptor, Angiotensin, Type 2/agonists , Sex Factors , Sodium-Hydrogen Exchanger 3/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
8.
Clin Sci (Lond) ; 128(4): 227-34, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25328009

ABSTRACT

The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking similarities. Moreover, in some instances, antagonists for one receptor are able to inhibit the action of agonists for the respective other receptor. These observations suggest that there may be a functional or even physical interaction of both receptors. This article discusses potential mechanisms underlying the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1-7) metabolite alamandine and its receptor MrgD in the observed effects. We conclude that evidence for a functional interaction of both receptors is strong, but that such an interaction may be species- and/or tissue-specific and that elucidation of the precise nature of the interaction is only at the very beginning.


Subject(s)
Proto-Oncogene Proteins/metabolism , Receptor, Angiotensin, Type 2/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Ligands , Protein Binding , Proto-Oncogene Mas
9.
Clin Sci (Lond) ; 128(2): 95-109, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25052203

ABSTRACT

In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis.


Subject(s)
Demyelinating Diseases/prevention & control , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Microglia/drug effects , Multiple Sclerosis/drug therapy , Receptor, Angiotensin, Type 2/agonists , T-Lymphocytes/drug effects , Animals , Female , Interferon-gamma/pharmacology , Mice , Mice, Inbred C57BL , Microglia/metabolism , Nitric Oxide/metabolism , Rats , Receptor, Angiotensin, Type 2/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , T-Lymphocytes/metabolism
10.
Curr Hypertens Rep ; 17(2): 3, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25620630

ABSTRACT

The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II (AngII) via its type 1 receptor, including anti-inflammatory, anti-oxidant, vasodilatory, and angiogenic effects, and the role of altered kinase-phosphatase signaling. Interactions of Mas with other receptors, including bradykinin receptors and AngII type 2 receptors are also considered. A more complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting.


Subject(s)
Angiotensin I/metabolism , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Stroke/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Humans , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects
11.
Am J Physiol Renal Physiol ; 307(10): F1123-31, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25186297

ABSTRACT

The aim of this study was to evaluate the effect of compound 21 (C21), a selective AT2 receptor agonist, on diabetic nephropathy and the potential additive effect of C21, when associated with losartan treatment, on the development of albuminuria and renal fibrosis in Zucker diabetic fatty (ZDF) rats. The experiments lasted 15 wk (from 5 to 20 wk of age) and were performed in 40 ZDF rats and 12 control lean rats. ZDF rats were divided into 4 groups: 1) 9 rats were treated with losartan; 2) 10 rats were treated with C21; 3) 9 rats were treated with losartan plus C21; and 4) 12 rats were maintained without any treatment. ZDF rats showed an increase in blood glucose level, albuminuria, renal fibrosis, macrophage infiltration, and TNF-α expression and a reduction of glomerular nephrin expression compared with control lean rats. C21 treatment reduced renal glomerular, tubulointerstitial, and perivascular fibrosis, and macrophage infiltration and TNF-α expression in ZDF rats. C21 treatment caused a decrease in albuminuria in ZDF rats up to 11 wk of age. Losartan decreased macrophage infiltration, TNF-α expression, and renal glomerular and perivascular fibrosis, restored glomerular nephrin expression, but did not affect tubulointerstitial fibrosis. Losartan treatment caused a decrease in albuminuria in ZDF rats up to 15 wk of age. At the end of the protocol, only the combination of C21 plus losartan significantly reduced albuminuria in ZDF rats. These data demonstrate that C21 has beneficial effects on diabetic nephropathy, suggesting the combination of C21 and losartan as a novel pharmacological tool to slow the progression of nephropathy in type II diabetes.


Subject(s)
Diabetic Nephropathies/prevention & control , Receptor, Angiotensin, Type 2/agonists , Sulfonamides/therapeutic use , Thiophenes/therapeutic use , Albuminuria/drug therapy , Animals , Blood Pressure/drug effects , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/pathology , Diabetic Nephropathies/urine , Drug Evaluation, Preclinical , Fibrosis , Interleukin-10/metabolism , Kidney/metabolism , Kidney/pathology , Losartan , Male , Membrane Proteins/metabolism , Rats, Zucker , Sulfonamides/pharmacology , Thiophenes/pharmacology , Tumor Necrosis Factor-alpha/metabolism
12.
Curr Hypertens Rep ; 16(7): 441, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24792092

ABSTRACT

The angiotensin AT2-receptor mediates tissue protective actions. Its regenerative potential has been tested in multiple disease models including models of myocardial infarction. These studies used different experimental approaches in order to detect AT2-receptor-related effects such as AT2-receptor deficiency or overexpression, treatment with an AT1-receptor blocker leading to indirect stimulation of the unopposed AT2-receptor, or studies using AT2-receptor agonists. It is a common finding in these studies that the AT2-receptor improves cardiac function in the early phase post-MI, and that this effect is preserved over periods of up to four months. Depending on the experimental protocol, the AT2R also attenuates post-MI left ventricular remodeling or protects the heart from early left ventricular thinning and rupture. In combination with AT1-receptor blockade or deficiency, post-MI cardiac hypertrophy is reduced. This article reviews studies on the role of the AT2-receptor in myocardial infarction with an emphasis on the most recent data obtained in studies using AT2-receptor agonists.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Myocardial Infarction/drug therapy , Receptor, Angiotensin, Type 2/metabolism , Animals , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Humans , Hypertension/drug therapy , Myocardial Infarction/physiopathology , Receptor, Angiotensin, Type 1/metabolism
13.
Hypertension ; 81(5): 964-976, 2024 May.
Article in English | MEDLINE | ID: mdl-38362781

ABSTRACT

The renin-angiotensin system is the most important peptide hormone system in the regulation of cardiovascular homeostasis. Its classical arm consists of the enzymes, renin, and angiotensin-converting enzyme, generating angiotensin II from angiotensinogen, which activates its AT1 receptor, thereby increasing blood pressure, retaining salt and water, and inducing cardiovascular hypertrophy and fibrosis. However, angiotensin II can also activate a second receptor, the AT2 receptor. Moreover, the removal of the C-terminal phenylalanine from angiotensin II by ACE2 (angiotensin-converting enzyme 2) yields angiotensin-(1-7), and this peptide interacts with its receptor Mas. When the aminoterminal Asp of angiotensin-(1-7) is decarboxylated, alamandine is generated, which activates the Mas-related G-protein-coupled receptor D, MrgD (Mas-related G-protein-coupled receptor type D). Since Mas, MrgD, and the AT2 receptor have opposing effects to the classical AT1 receptor, they and the enzymes and peptides activating them are called the alternative or protective arm of the renin-angiotensin system. This review will cover the historical aspects and the current standing of this recent addition to the biology of the renin-angiotensin system.


Subject(s)
Angiotensin II , Renin-Angiotensin System , Angiotensin I/metabolism , Peptide Fragments/metabolism , Peptides , Peptidyl-Dipeptidase A/metabolism , Receptors, G-Protein-Coupled/metabolism , Renin , Renin-Angiotensin System/physiology , Humans
14.
Peptides ; 172: 171137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142816

ABSTRACT

Angiotensin AT2-receptor (AT2R) agonists have shown a wide range of protective effects in many preclinical disease models. However, the availability of AT2R-agonists is very limited due to the lack of high-throughput assays for AT2R-agonist identification. Therefore, we aimed to design and validate an assay for high-throughput screening of AT2R-agonist candidates. The assay is based on nitric oxide (NO) release measurements in primary human aortic endothelial cells (HAEC), in AT2R-transfected CHO cells (AT2R-CHO) or in non-transfected CHO cells (Flp-CHO) using the fluorescent probe DAF-FM diacetate. It is run in 96-well plates and fluorescence signals are semi-automatically quantified. The assay was tested for sensitivity (recognition of true positive results), selectivity (recognition of true negative results), and reliability (by calculating the repeatability coefficient (RC)). The high-throughput, semi-automated method was proven suitable, as the NO-releasing agents C21, CGP42112A, angiotensin-(1-7) and acetylcholine significantly increased NO release from HAEC. The assay is sensitive and selective, since the established AT2R-agonists C21, CGP42112A and angiotensin II significantly increased NO release from AT2R-CHO cells, while the non-AT2R-agonists angiotensin-(1-7) and acetylcholine had no effect. Assay reliability was shown by high-throughput screening of a library comprised of 40 potential AT2R-agonists, of which 39 met our requirements for reliability (RC ≤ 20% different from RC for C21). Our newly developed high-throughput method for detection of AT2R-agonistic activity was proven to be sensitive, selective, and reliable. This method is suitable for the screening of potential AT2R-agonists in future drug development programs.


Subject(s)
Acetylcholine , Imidazoles , Nitric Oxide , Sulfonamides , Thiophenes , Animals , Cricetinae , Humans , Cricetulus , Endothelial Cells , High-Throughput Screening Assays , Reproducibility of Results , Receptor, Angiotensin, Type 2 , Angiotensin II/pharmacology
15.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38948791

ABSTRACT

Background: The renin-angiotensin system involves many more enzymes, receptors and biologically active peptides than originally thought. With this study, we investigated whether angiotensin-(1-5) [Ang-(1-5)], a 5-amino acid fragment of angiotensin II, has biological activity, and through which receptor it elicits effects. Methods: The effect of Ang-(1-5) (1µM) on nitric oxide release was measured by DAF-FM staining in human aortic endothelial cells (HAEC), or Chinese Hamster Ovary (CHO) cells stably transfected with the angiotensin AT 2 -receptor (AT 2 R) or the receptor Mas. A potential vasodilatory effect of Ang-(1-5) was tested in mouse mesenteric and human renal arteries by wire myography; the effect on blood pressure was evaluated in normotensive C57BL/6 mice by Millar catheter. These experiments were performed in the presence or absence of a range of antagonists or inhibitors or in AT 2 R-knockout mice. Binding of Ang-(1-5) to the AT 2 R was confirmed and the preferred conformations determined by in silico docking simulations. The signaling network of Ang-(1-5) was mapped by quantitative phosphoproteomics. Results: Key findings included: (1) Ang-(1-5) induced activation of eNOS by changes in phosphorylation at Ser1177 eNOS and Tyr657 eNOS and thereby (2) increased NO release from HAEC and AT 2 R-transfected CHO cells, but not from Mas-transfected or non-transfected CHO cells. (3) Ang-(1-5) induced relaxation of preconstricted mouse mesenteric and human renal arteries and (4) lowered blood pressure in normotensive mice - effects which were respectively absent in arteries from AT 2 R-KO or in PD123319-treated mice and which were more potent than effects of the established AT 2 R-agonist C21. (5) According to in silico modelling, Ang-(1-5) binds to the AT 2 R in two preferred conformations, one differing substantially from where the first five amino acids within angiotensin II bind to the AT 2 R. (6) Ang-(1-5) modifies signaling pathways in a protective RAS-typical way and with relevance for endothelial cell physiology and disease. Conclusions: Ang-(1-5) is a potent, endogenous AT 2 R-agonist.

16.
Neurobiol Dis ; 51: 177-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23174180

ABSTRACT

It is widely accepted that the angiotensin AT2-receptor (AT2R) has neuroprotective features. In the present study we tested pharmacological AT2R-stimulation as a therapeutic approach in a model of spinal cord compression injury (SCI) in mice using the novel non-peptide AT2R-agonist, Compound 21 (C21). Complementary experiments in primary neurons and organotypic cultures served to identify underlying mechanisms. Functional recovery and plasticity of corticospinal tract (CST) fibers following SCI were monitored after application of C21 (0.3mg/kg/dayi.p.) or vehicle for 4 weeks. Organotypic co-culture of GFP-positive entorhinal cortices with hippocampal target tissue served to evaluate the impact of C21 on reinnervation. Neuronal differentiation, apoptosis and expression of neurotrophins were investigated in primary murine astrocytes and neuronal cells. C21 significantly improved functional recovery after SCI compared to controls, and this significantly correlated with the increased number of CST fibers caudal to the lesion site. In vitro, C21 significantly promoted reinnervation in organotypic brain slice co-cultures (+50%) and neurite outgrowth of primary neurons (+25%). C21-induced neurite outgrowth was absent in neurons derived from AT2R-KO mice. In primary neurons, treatment with C21 further induced RNA expression of anti-apoptotic Bcl-2 (+75.7%), brain-derived neurotrophic factor (BDNF) (+53.7%), the neurotrophin receptors TrkA (+57.4%) and TrkB (+67.9%) and a marker for neurite growth, GAP43 (+103%), but not TrkC. Our data suggest that selective AT2R-stimulation improves functional recovery in experimental spinal cord injury through promotion of axonal plasticity and through neuroprotective and anti-apoptotic mechanisms. Thus, AT2R-stimulation may be considered for the development of a novel therapeutic approach for the treatment of spinal cord injury.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Neuronal Plasticity/physiology , Receptor, Angiotensin, Type 2/agonists , Spinal Cord Injuries/metabolism , Animals , Axons/metabolism , Disease Models, Animal , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nerve Regeneration/drug effects , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Real-Time Polymerase Chain Reaction , Recovery of Function/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
17.
Peptides ; 164: 170990, 2023 06.
Article in English | MEDLINE | ID: mdl-36894067

ABSTRACT

Since the AT2-receptor (AT2R) agonist C21 has structural similarity to the AT1-receptor antagonists Irbesartan and Losartan, which are antagonists not only at the AT1R, but also at thromboxane TP-receptors, we tested the hypothesis that C21 has TP-receptor antagonistic properties as well. Isolated mouse mesenteric arteries from C57BL/6 J and AT2R-knockout mice (AT2R-/y) were mounted in wire myographs, contracted with either phenylephrine or the thromboxane A2 (TXA2) analogue U46619, and the relaxing effect of C21 (0.1 nM - 10 µM) was investigated. The effect of C21 on U46619-induced platelet aggregation was measured by an impedance aggregometer. Direct interaction of C21 with TP-receptors was determined by an ß-arrestin biosensor assay. C21 caused significant, concentration-dependent relaxations in phenylephrine- and U46619-contracted mesenteric arteries from C57BL/6 J mice. The relaxing effect of C21 was absent in phenylephrine-contracted arteries from AT2R-/y mice, whereas it was unchanged in U46619-contracted arteries from AT2R-/y mice. C21 inhibited U46619-stimulated aggregation of human platelets, which was not inhibited by the AT2R-antagonist PD123319. C21 reduced U46619-induced recruitment of ß-arrestin to human thromboxane TP-receptors with a calculated Ki of 3.74 µM. We conclude that in addition to AT2R-agonistic properties, C21 also acts as low-affinity TP-receptor antagonist, and that - depending on the constrictor - both mechanisms can be responsible for C21-induced vasorelaxation. Furthermore, by acting as a TP-receptor antagonist, C21 inhibits platelet aggregation. These findings are important for understanding potential off-target effects of C21 in the preclinical and clinical context and for the interpretation of C21-related myography data in assays with TXA2-analogues as constrictor.


Subject(s)
Receptors, Thromboxane , Thromboxanes , Humans , Mice , Animals , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Mice, Inbred C57BL , Thromboxane A2/pharmacology , Phenylephrine/pharmacology , Angiotensins
18.
Biochem Pharmacol ; 216: 115793, 2023 10.
Article in English | MEDLINE | ID: mdl-37689272

ABSTRACT

With the discovery of the protective arm of the renin-angiotensin system (RAS), interest has grown in protective RAS-related receptors such as the angiotensin AT2-receptor [AT2R] as potential new drug targets. While it is known that AT2R couple to Gi, it is also apparent that they do not signal via inhibition of adenylyl cyclase/decrease in cAMP, as do many Gi-coupled receptors. Thus, standard commercially-available assays cannot be applied to test for agonistic or antagonistic properties of AT2R ligands. This lack of standard assays has hampered the development of new drugs targeting the AT2R. Therefore, we aimed at developing a reliable, technically easy assay for the determination of intrinsic activity of AT2R ligands, primarily for distinguishing between AT2R agonists and antagonists. We found that measurement of NO release by DAF-FM fluorescence in primary human aortic endothelial cells (HAEC) or in AT2R-transfected CHO cells is a reliable assay for the characterization of AT2R ligands. While testing the assay, we made several novel findings, including: a) C21 is a full agonist at the AT2R (with the same efficacy as angiotensin II); b) C21 has no intrinsic activity at the receptor Mas; c) AT2R-transfected HEK-293 cells are unresponsive to AT2R stimulation; d) EMA401 and PD123319, which are commonly regarded as AT2R antagonists, are partial agonists at the AT2R. Collectively, we have developed and tested an assay based on the measurement and quantification of NO release in HAEC or in AT2R-CHO cells that is suitable for the characterisation of novel and established AT2R ligands.


Subject(s)
Endothelial Cells , Receptor, Angiotensin, Type 2 , Animals , Cricetinae , Humans , Cricetulus , HEK293 Cells , Angiotensin II/pharmacology , Receptor, Angiotensin, Type 1
19.
Hypertension ; 80(6): 1140-1149, 2023 06.
Article in English | MEDLINE | ID: mdl-36919603

ABSTRACT

Hypertension is the leading risk factor for cardiovascular disease and premature death among women globally. However, there is a fundamental lack of knowledge regarding the sex-specific pathophysiology of the condition. In addition, risk factors for hypertension and cardiovascular disease unique to women or female sex are insufficiently acknowledged in clinical guidelines. This review summarizes the existing evidence on women and female-specific risk factors and clinical management of hypertension, to identify critical knowledge gaps relevant to research, clinical practice, and women's heart health awareness. Female-specific risk factors relate not only to reproduction, such as the association of gynecological conditions, adverse pregnancy outcomes or menopause with hypertension, but also to the specific roles of women in society and science, such as gender differences in received medical care and the underrepresentation of women in both the science workforce and as participants in research, which contribute to the limited evidence-based, gender- or sex-specific recommendations. A key point is that the development of hypertension starts in young, premenopausal women, often in association with disorders of reproductive organs, and therefore needs to be managed early in life to prevent future cardiovascular disease. Considering the lower blood pressure levels at which cardiovascular disease occurs, thresholds for diagnosis and treatment of hypertension may need to be lower for women.


Subject(s)
Cardiovascular Diseases , Hypertension , Male , Pregnancy , Humans , Female , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Hypertension/diagnosis , Hypertension/epidemiology , Risk Factors , Women's Health , Sex Factors
20.
Cardiovasc Res ; 119(2): 381-409, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36219457

ABSTRACT

ABSTRACT: Raised blood pressure (BP) is the leading cause of preventable death in the world. Yet, its global prevalence is increasing, and it remains poorly detected, treated, and controlled in both high- and low-resource settings. From the perspective of members of the International Society of Hypertension based in all regions, we reflect on the past, present, and future of hypertension care, highlighting key challenges and opportunities, which are often region-specific. We report that most countries failed to show sufficient improvements in BP control rates over the past three decades, with greater improvements mainly seen in some high-income countries, also reflected in substantial reductions in the burden of cardiovascular disease and deaths. Globally, there are significant inequities and disparities based on resources, sociodemographic environment, and race with subsequent disproportionate hypertension-related outcomes. Additional unique challenges in specific regions include conflict, wars, migration, unemployment, rapid urbanization, extremely limited funding, pollution, COVID-19-related restrictions and inequalities, obesity, and excessive salt and alcohol intake. Immediate action is needed to address suboptimal hypertension care and related disparities on a global scale. We propose a Global Hypertension Care Taskforce including multiple stakeholders and societies to identify and implement actions in reducing inequities, addressing social, commercial, and environmental determinants, and strengthening health systems implement a well-designed customized quality-of-care improvement framework.


Subject(s)
COVID-19 , Cardiovascular Diseases , Hypertension , Humans , Blood Pressure , Hypertension/diagnosis , Hypertension/drug therapy , Hypertension/epidemiology , Income
SELECTION OF CITATIONS
SEARCH DETAIL