Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Med Internet Res ; 25: e46571, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37656502

ABSTRACT

BACKGROUND: Genetic testing has become an integrated part of health care for patients with breast or ovarian cancer, and the increasing demand for genetic testing is accompanied by an increasing need for easy access to reliable genetic information for patients. Therefore, we developed a chatbot app (Rosa) that is able to perform humanlike digital conversations about genetic BRCA testing. OBJECTIVE: Before implementing this new information service in daily clinical practice, we wanted to explore 2 aspects of chatbot use: the perceived utility and trust in chatbot technology among healthy patients at risk of hereditary cancer and how interaction with a chatbot regarding sensitive information about hereditary cancer influences patients. METHODS: Overall, 175 healthy individuals at risk of hereditary breast and ovarian cancer were invited to test the chatbot, Rosa, before and after genetic counseling. To secure a varied sample, participants were recruited from all cancer genetic clinics in Norway, and the selection was based on age, gender, and risk of having a BRCA pathogenic variant. Among the 34.9% (61/175) of participants who consented for individual interview, a selected subgroup (16/61, 26%) shared their experience through in-depth interviews via video. The semistructured interviews covered the following topics: usability, perceived usefulness, trust in the information received via the chatbot, how Rosa influenced the user, and thoughts about future use of digital tools in health care. The transcripts were analyzed using the stepwise-deductive inductive approach. RESULTS: The overall finding was that the chatbot was very welcomed by the participants. They appreciated the 24/7 availability wherever they were and the possibility to use it to prepare for genetic counseling and to repeat and ask questions about what had been said afterward. As Rosa was created by health care professionals, they also valued the information they received as being medically correct. Rosa was referred to as being better than Google because it provided specific and reliable answers to their questions. The findings were summed up in 3 concepts: "Anytime, anywhere"; "In addition, not instead"; and "Trustworthy and true." All participants (16/16) denied increased worry after reading about genetic testing and hereditary breast and ovarian cancer in Rosa. CONCLUSIONS: Our results indicate that a genetic information chatbot has the potential to contribute to easy access to uniform information for patients at risk of hereditary breast and ovarian cancer, regardless of geographical location. The 24/7 availability of quality-assured information, tailored to the specific situation, had a reassuring effect on our participants. It was consistent across concepts that Rosa was a tool for preparation and repetition; however, none of the participants (0/16) supported that Rosa could replace genetic counseling if hereditary cancer was confirmed. This indicates that a chatbot can be a well-suited digital companion to genetic counseling.


Subject(s)
Ovarian Neoplasms , Rosa , Humans , Female , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Genetic Testing , Qualitative Research
2.
Am J Hum Genet ; 105(2): 334-350, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31374203

ABSTRACT

Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected ("concordant") direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive ("discordant") relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10-8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms-early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways-that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness.


Subject(s)
Cognition Disorders/physiopathology , Cognition/physiology , Educational Status , Neurodevelopmental Disorders/etiology , Polymorphism, Single Nucleotide , Schizophrenia/physiopathology , Synaptic Transmission , Adult , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Neurodevelopmental Disorders/pathology
3.
Mol Psychiatry ; 26(8): 3876-3883, 2021 08.
Article in English | MEDLINE | ID: mdl-32047264

ABSTRACT

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.


Subject(s)
Genome-Wide Association Study , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Middle Aged , Putamen , Thalamus
4.
Psychol Med ; : 1-11, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33653435

ABSTRACT

Abstract. BACKGROUND: Altered expression of the complement component C4A gene is a known risk factor for schizophrenia. Further, predicted brain C4A expression has also been associated with memory function highlighting that altered C4A expression in the brain may be relevant for cognitive and behavioral traits. METHODS: We obtained genetic information and performance measures on seven cognitive tasks for up to 329 773 individuals from the UK Biobank, as well as brain imaging data for a subset of 33 003 participants. Direct genotypes for variants (n = 3213) within the major histocompatibility complex region were used to impute C4 structural variation, from which predicted expression of the C4A and C4B genes in human brain tissue were predicted. We investigated if predicted brain C4A or C4B expression were associated with cognitive performance and brain imaging measures using linear regression analyses. RESULTS: We identified significant negative associations between predicted C4A expression and performance on select cognitive tests, and significant associations with MRI-based cortical thickness and surface area in select regions. Finally, we observed significant inconsistent partial mediation of the effects of predicted C4A expression on cognitive performance, by specific brain structure measures. CONCLUSIONS: These results demonstrate that the C4 risk locus is associated with the central endophenotypes of cognitive performance and brain morphology, even when considered independently of other genetic risk factors and in individuals without mental or neurological disorders.

5.
Brain Behav Immun ; 94: 235-244, 2021 05.
Article in English | MEDLINE | ID: mdl-33571628

ABSTRACT

Despite the high heritability of schizophrenia (SCZ), details of its pathophysiology and etiology are still unknown. Recent findings suggest that aberrant inflammatory regulation and microRNAs (miRNAs) are involved. Here we performed a comparative analysis of the global miRNome of human induced pluripotent stem cell (iPSC)-astrocytes, derived from SCZ patients and healthy controls (CTRLs), at baseline and following inflammatory modulation using IL-1ß. We identified four differentially expressed miRNAs (miR-337-3p, miR-127-5p, miR-206, miR-1185-1-3p) in SCZ astrocytes that exhibited significantly lower baseline expression relative to CTRLs. Group-specific differential expression (DE) analyses exploring possible distinctions in the modulatory capacity of IL-1ß on miRNA expression in SCZ versus CTRL astroglia revealed trends toward altered miRNA expressions. In addition, we analyzed peripheral blood samples from a large cohort of SCZ patients (n = 484) and CTRLs (n = 496) screening for the expression of specific gene targets of the four DE miRNAs that were identified in our baseline astrocyte setup. Three of these genes, LAMTOR4, IL23R, and ERBB3, had a significantly lower expression in the blood of SCZ patients compared to CTRLs after multiple testing correction. We also found nominally significant differences for ERBB2 and IRAK1, which similarly displayed lower expressions in SCZ versus CTRL. Furthermore, we found matching patterns between the expressions of identified miRNAs and their target genes when comparing our in vitro and in vivo results. The current results further our understanding of the pathobiological basis of SCZ.


Subject(s)
Induced Pluripotent Stem Cells , MicroRNAs , Schizophrenia , Astrocytes , Gene Expression Profiling , Guanine Nucleotide Exchange Factors , Humans , Inflammation/genetics , MicroRNAs/genetics , Schizophrenia/genetics , Transcriptome
6.
Mol Psychiatry ; 25(11): 3053-3065, 2020 11.
Article in English | MEDLINE | ID: mdl-30279459

ABSTRACT

The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10-16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Hippocampus/anatomy & histology , Hippocampus/pathology , Neuroimaging , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Schizophrenia/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Child , Child, Preschool , Female , Genome-Wide Association Study , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Male , Middle Aged , Schizophrenia/diagnostic imaging , Young Adult
7.
Am J Hum Genet ; 100(5): 737-750, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28457472

ABSTRACT

Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals.


Subject(s)
Cathepsin B/metabolism , Enhancer Elements, Genetic , Erythema/genetics , Gene Duplication , Gene Expression Regulation , Keratosis/genetics , Skin Diseases, Genetic/genetics , Case-Control Studies , Cathepsin B/genetics , Chromosome Mapping , Chromosomes, Human, Pair 8/genetics , DNA Copy Number Variations , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Epidermis/metabolism , Epigenomics , Erythema/epidemiology , Female , Genetic Markers , Humans , Keratinocytes/metabolism , Keratosis/epidemiology , MCF-7 Cells , Male , Norway/epidemiology , Pedigree , Skin Diseases, Genetic/epidemiology , South Africa/epidemiology
8.
Eur Arch Psychiatry Clin Neurosci ; 270(1): 49-58, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31028479

ABSTRACT

To investigate whether changes in serum lipids are associated with cognitive performance in first episode psychosis (FEP) patients during their first year of antipsychotic drug treatment. One hundred and thirty-two antipsychotic-treated FEP patients were included through the TOP study along with 83 age- and gender-matched healthy controls (HC). Information regarding cognitive performance, psychotic symptoms, lifestyle, body mass index, serum lipids [total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides] and antipsychotic treatment was obtained at baseline and after 1 year. The cognitive test battery is comprised of assessments for verbal learning, processing speed, working memory, verbal fluency, and inhibition. Mixed-effects models were used to study the relationship between changes over time in serum lipids and cognitive domains, controlling for potential confounders. There was a significant group by HDL interaction effect for verbal learning (F = 11.12, p = 0.001), where an increase in HDL levels was associated with improvement in verbal learning in FEP patients but not in HC. Practice effects, lifestyle, and psychotic symptoms did not significantly affect this relationship. Antipsychotic-treated FEP patients who increased in HDL levels during the first year of follow-up exhibited better verbal learning capacity. Further investigations are needed to clarify the underlying mechanisms.


Subject(s)
Antipsychotic Agents/pharmacology , Cholesterol, HDL/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/drug therapy , Psychotic Disorders/blood , Psychotic Disorders/drug therapy , Verbal Learning/drug effects , Adolescent , Adult , Case-Control Studies , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Outcome Assessment, Health Care , Psychotic Disorders/complications , Young Adult
9.
Int J Neuropsychopharmacol ; 22(5): 358-369, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30854556

ABSTRACT

BACKGROUND: Antipsychotic drugs can negatively affect the metabolic status of patients, with olanzapine as one of the most potent drugs. While patients are often medicated for long time periods, experiments in rats typically run for 1 to 12 weeks, showing olanzapine-related weight gain and increased plasma lipid levels, with transcriptional upregulation of lipogenic genes in liver and adipose tissue. It remains unknown whether metabolic status will deteriorate with time. METHODS: To examine long-term metabolic effects, we administered intramuscular long-acting injections of olanzapine (100 mg/kg BW) or control substance to female rats for up to 13 months. RESULTS: Exposure to olanzapine long-acting injections led to rapid weight gain, which was sustained throughout the experiment. At 1, 6, and 13 months, plasma lipid levels were measured in separate cohorts of rats, displaying no increase. Hepatic transcription of lipid-related genes was transiently upregulated at 1 month. Glucose and insulin tolerance tests indicated insulin resistance in olanzapine-treated rats after 12 months. CONCLUSION: Our data show that the continuous increase in body weight in response to long-term olanzapine exposure was accompanied by surprisingly few concomitant changes in plasma lipids and lipogenic gene expression, suggesting that adaptive mechanisms are involved to reduce long-term metabolic adverse effects of this antipsychotic agent in rats.


Subject(s)
Antipsychotic Agents/adverse effects , Lipids/blood , Olanzapine/adverse effects , Weight Gain/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Animals, Outbred Strains , Antipsychotic Agents/blood , Antipsychotic Agents/pharmacology , Blood Glucose/drug effects , Female , Glucose Tolerance Test , Injections, Intramuscular , Insulin/metabolism , Insulin Resistance , Liver/drug effects , Liver/metabolism , Olanzapine/blood , Olanzapine/pharmacology , Random Allocation , Rats, Sprague-Dawley , Time Factors
10.
Eur Arch Psychiatry Clin Neurosci ; 269(7): 795-802, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29721726

ABSTRACT

Although the relationship between positive and negative symptoms of psychosis and dyslipidemia has been thoroughly investigated in recent studies, the potential link between depression and lipid status is still under-investigated. We here examined the association between lipid levels and depressive symptomatology in patients with psychotic disorders, in addition to their possible inflammatory associations. Participants (n = 652) with the following distribution: schizophrenia, schizophreniform and schizoaffective disorder (schizophrenia group, n = 344); bipolar I, II, NOS, and psychosis NOS (non-schizophrenia group, n = 308) were recruited consecutively from the Norwegian Thematically Organized Psychosis (TOP) Study. Clinical data were obtained by Positive and Negative Syndrome Scale (PANSS), and Calgary Depression Scale for Schizophrenia (CDSS). Blood samples were analyzed for total cholesterol (TC), low-density lipoprotein (LDL), triglyceride (TG), C-reactive protein (CRP), soluble tumor necrosis factor receptor 1(sTNF-R1), osteoprotegerin (OPG), and interleukin 1 receptor antagonist (IL-1Ra). After adjusting for age, gender, BMI, smoking, and dyslipidemia-inducing antipsychotics, TC and LDL scores showed significant associations with depression [ß = 0.13, p = 0.007; ß = 0.14, p = 0.007], and with two inflammatory markers: CRP [ß = 0.14, p = 0.007; ß = 0.16, p = 0.007] and OPG [ß = 0.14, p = 0.007; ß = 0.11, p = 0.007]. Total model variance was 17% for both analyses [F(12, 433) = 8.42, p < 0.001; F(12, 433) = 8.64, p < 0.001]. Current findings highlight a potential independent role of depression and inflammatory markers, CRP and OPG in specific, in the pathophysiology of dyslipidemia in psychotic disorders.


Subject(s)
Depression/physiopathology , Dyslipidemias/blood , Inflammation/blood , Osteoprotegerin/blood , Psychotic Disorders/blood , Psychotic Disorders/physiopathology , Schizophrenia/blood , Schizophrenia/physiopathology , Adult , C-Reactive Protein/metabolism , Cholesterol, LDL/blood , Comorbidity , Depression/epidemiology , Dyslipidemias/epidemiology , Female , Humans , Inflammation/epidemiology , Interleukin 1 Receptor Antagonist Protein/blood , Male , Norway , Psychotic Disorders/epidemiology , Receptors, Tumor Necrosis Factor, Type I/blood , Schizophrenia/epidemiology , Triglycerides/blood , Young Adult
11.
PLoS Genet ; 12(7): e1006143, 2016 07.
Article in English | MEDLINE | ID: mdl-27459196

ABSTRACT

The many subcomponents of the human cortex are known to follow an anatomical pattern and functional relationship that appears to be highly conserved between individuals. This suggests that this pattern and the relationship among cortical regions are important for cortical function and likely shaped by genetic factors, although the degree to which genetic factors contribute to this pattern is unknown. We assessed the genetic relationships among 12 cortical surface areas using brain images and genotype information on 2,364 unrelated individuals, brain images on 466 twin pairs, and transcriptome data on 6 postmortem brains in order to determine whether a consistent and biologically meaningful pattern could be identified from these very different data sets. We find that the patterns revealed by each data set are highly consistent (p<10-3), and are biologically meaningful on several fronts. For example, close genetic relationships are seen in cortical regions within the same lobes and, the frontal lobe, a region showing great evolutionary expansion and functional complexity, has the most distant genetic relationship with other lobes. The frontal lobe also exhibits the most distinct expression pattern relative to the other regions, implicating a number of genes with known functions mediating immune and related processes. Our analyses reflect one of the first attempts to provide an assessment of the biological consistency of a genetic phenomenon involving the brain that leverages very different types of data, and therefore is not just statistical replication which purposefully use very similar data sets.


Subject(s)
Cerebral Cortex/metabolism , Frontal Lobe/metabolism , Gene Expression Regulation/genetics , Transcriptome/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brain Mapping , Cadaver , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Child , Child, Preschool , Female , Frontal Lobe/anatomy & histology , Frontal Lobe/diagnostic imaging , Gene Expression Profiling , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Phenotype , Twins/genetics
12.
Acta Neuropsychiatr ; 31(1): 36-45, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30394240

ABSTRACT

OBJECTIVE: Inverse relationships between the C-reactive protein (CRP) levels and cognitive performance in acute psychosis have been demonstrated. We aimed to investigate how the serum level and initial change of CRP in acutely admitted patients with psychosis was correlated with cognitive performance during a 6-months follow-up period. METHODS: The study is part of a pragmatic, randomised trial comparing four different second-generation antipsychotic drugs, and consists of 208 acute phase patients recruited at admittance for psychosis. This study reports data for all groups collectively, and does not compare treatment groups. Measurements of CRP and cognitive performance were conducted at baseline (T1) and after 4 weeks on average after inclusion (T2). Cognition was also assessed after 3 months (T3) and 6 months (T4) of follow-up. RESULTS: Global cognition improved during the follow-up period of 6 months, especially in the T1-T2 interval. The different cognitive subdomains showed different time-dependent profiles of improvement, with memory and attention improving significantly also in the later phases. Reduction of the CRP level during the initial follow-up interval (T1-T2) was associated with increased overall cognitive performance in the T2-T4 interval, but not in the T1-T2 interval. For the cognitive subdomains, we found an inverse association between change in CRP level and verbal abilities (T2-T4 interval), and attention (T2-T3 interval). CONCLUSION: These findings indicate that initial changes in the serum level of CRP in the acute phase of psychosis may predict cognitive function in later phases of the disease.


Subject(s)
Antipsychotic Agents/pharmacology , C-Reactive Protein , Cognitive Dysfunction , Outcome Assessment, Health Care , Psychotic Disorders , Adolescent , Adult , Aged , Antipsychotic Agents/administration & dosage , Cognitive Dysfunction/blood , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Psychotic Disorders/blood , Psychotic Disorders/complications , Psychotic Disorders/drug therapy , Young Adult
13.
BMC Evol Biol ; 18(1): 63, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29747567

ABSTRACT

BACKGROUND: One explanation for the persistence of schizophrenia despite the reduced fertility of patients is that it is a by-product of recent human evolution. This hypothesis is supported by evidence suggesting that recently-evolved genomic regions in humans are involved in the genetic risk for schizophrenia. Using summary statistics from genome-wide association studies (GWAS) of schizophrenia and 11 other phenotypes, we tested for enrichment of association with GWAS traits in regions that have undergone methylation changes in the human lineage compared to Neanderthals and Denisovans, i.e. human-specific differentially methylated regions (DMRs). We used analytical tools that evaluate polygenic enrichment of a subset of genomic variants against all variants. RESULTS: Schizophrenia was the only trait in which DMR SNPs showed clear enrichment of association that passed the genome-wide significance threshold. The enrichment was not observed for Neanderthal or Denisovan DMRs. The enrichment seen in human DMRs is comparable to that for genomic regions tagged by Neanderthal Selective Sweep markers, and stronger than that for Human Accelerated Regions. The enrichment survives multiple testing performed through permutation (n = 10,000) and bootstrapping (n = 5000) in INRICH (p < 0.01). Some enrichment of association with height was observed at the gene level. CONCLUSIONS: Regions where DNA methylation modifications have changed during recent human evolution show enrichment of association with schizophrenia and possibly with height. Our study further supports the hypothesis that genetic variants conferring risk of schizophrenia co-occur in genomic regions that have changed as the human species evolved. Since methylation is an epigenetic mark, potentially mediated by environmental changes, our results also suggest that interaction with the environment might have contributed to that association.


Subject(s)
DNA Methylation/genetics , Evolution, Molecular , Schizophrenia/genetics , Adult , Bipolar Disorder/genetics , Body Height/genetics , Body Mass Index , Female , Genetic Markers , Genome-Wide Association Study , Genotype , Humans , Major Histocompatibility Complex/genetics , Male , Molecular Sequence Annotation , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide/genetics
14.
Twin Res Hum Genet ; 21(5): 394-397, 2018 10.
Article in English | MEDLINE | ID: mdl-30001766

ABSTRACT

Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88) presented a critique of our recently published paper in Cell Reports entitled 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' (Lam et al., Cell Reports, Vol. 21, 2017, 2597-2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229-237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from 'inflation in the FDR [false discovery rate]', as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88), and are not 'more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence'.


Subject(s)
Genome-Wide Association Study , Nootropic Agents , Cognition , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide
15.
Nucleic Acids Res ; 44(7): 3070-81, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26673698

ABSTRACT

MicroRNAs (miRNAs) play a major role in the post-transcriptional regulation of target genes, especially in development and differentiation. Our understanding about the transcriptional regulation of miRNA genes is limited by inadequate annotation of primary miRNA (pri-miRNA) transcripts. Here, we used CAGE-seq and RNA-seq to provide genome-wide identification of the pri-miRNA core promoter repertoire and its dynamic usage during zebrafish embryogenesis. We assigned pri-miRNA promoters to 152 precursor-miRNAs (pre-miRNAs), the majority of which were supported by promoter associated post-translational histone modifications (H3K4me3, H2A.Z) and RNA polymerase II (RNAPII) occupancy. We validated seven miR-9 pri-miRNAs by in situ hybridization and showed similar expression patterns as mature miR-9. In addition, processing of an alternative intronic promoter of miR-9-5 was validated by 5' RACE PCR. Developmental profiling revealed a subset of pri-miRNAs that are maternally inherited. Moreover, we show that promoter-associated H3K4me3, H2A.Z and RNAPII marks are not only present at pri-miRNA promoters but are also specifically enriched at pre-miRNAs, suggesting chromatin level regulation of pre-miRNAs. Furthermore, we demonstrated that CAGE-seq also detects 3'-end processing of pre-miRNAs on Drosha cleavage site that correlates with miRNA-offset RNAs (moRNAs) production and provides a new tool for detecting Drosha processing events and predicting pre-miRNA processing by a genome-wide assay.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , RNA Precursors/genetics , RNA Processing, Post-Transcriptional , RNA, Small Untranslated/genetics , Transcription, Genetic , Animals , Chromatin/metabolism , Embryonic Development/genetics , Histones/metabolism , MicroRNAs/metabolism , Promoter Regions, Genetic , RNA Polymerase II/analysis , RNA Precursors/metabolism , RNA, Small Untranslated/metabolism , Ribonuclease III/metabolism , Transcription Initiation Site , Zebrafish/embryology , Zebrafish/genetics
16.
Bioinformatics ; 32(19): 3018-20, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27288501

ABSTRACT

MOTIVATION: The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. RESULTS: To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. AVAILABILITY AND IMPLEMENTATION: https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html CONTACT: tomasz.stokowy@k2.uib.no SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Exome , Genome, Human , Rare Diseases/genetics , Sequence Analysis, DNA/methods , Genetic Variation , Humans
17.
Clin Chem ; 63(2): 503-512, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27974384

ABSTRACT

BACKGROUND: Despite advances in next generation DNA sequencing (NGS), NGS-based single gene tests for diagnostic purposes require improvements in terms of completeness, quality, speed, and cost. Single-molecule molecular inversion probes (smMIPs) are a technology with unrealized potential in the area of clinical genetic testing. In this proof-of-concept study, we selected 2 frequently requested gene tests, those for the breast cancer genes BRCA1 and BRCA2, and developed an automated work flow based on smMIPs. METHODS: The BRCA1 and BRCA2 smMIPs were validated using 166 human genomic DNA samples with known variant status. A generic automated work flow was built to perform smMIP-based enrichment and sequencing for BRCA1, BRCA2, and the checkpoint kinase 2 (CHEK2) c.1100del variant. RESULTS: Pathogenic and benign variants were analyzed in a subset of 152 previously BRCA-genotyped samples, yielding an analytical sensitivity and specificity of 100%. Following automation, blind analysis of 65 in-house samples and 267 Norwegian samples correctly identified all true-positive variants (>3000), with no false positives. Consequent to process optimization, turnaround times were reduced by 60% to currently 10-15 days. Copy number variants were detected with an analytical sensitivity of 100% and an analytical specificity of 88%. CONCLUSIONS: smMIP-based genetic testing enables automated and reliable analysis of the coding sequences of BRCA1 and BRCA2. The use of single-molecule tags, double-tiled targeted enrichment, and capturing and sequencing in duplo, in combination with automated library preparation and data analysis, results in a robust process and reduces routine turnaround times. Furthermore, smMIP-based copy number variation analysis could make independent copy number variation tools like multiplex ligation-dependent probes amplification dispensable.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Copy Number Variations/genetics , DNA Probes/genetics , High-Throughput Nucleotide Sequencing , Humans
18.
Brain Behav Immun ; 61: 209-216, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27890662

ABSTRACT

The complement cascade plays a role in synaptic pruning and synaptic plasticity, which seem to be involved in cognitive functions and psychiatric disorders. Genetic variants in the closely related CSMD1 and CSMD2 genes, which are implicated in complement regulation, are associated with schizophrenia. Since patients with schizophrenia often show cognitive impairments, we tested whether variants in CSMD1 and CSMD2 are also associated with cognitive functions per se. We took a discovery-replication approach, using well-characterized Scandinavian cohorts. A total of 1637 SNPs in CSMD1 and 206 SNPs in CSMD2 were tested for association with cognitive functions in the NCNG sample (Norwegian Cognitive NeuroGenetics; n=670). Replication testing of SNPs with p-value<0.001 (7 in CSMD1 and 3 in CSMD2) was carried out in the TOP sample (Thematically Organized Psychosis; n=1025) and the BETULA sample (Betula Longitudinal Study on aging, memory and dementia; n=1742). Finally, we conducted a meta-analysis of these SNPs using all three samples. The previously identified schizophrenia marker in CSMD1 (SNP rs10503253) was also included. The strongest association was observed between the CSMD1 SNP rs2740931 and performance in immediate episodic memory (p-value=5×10-6, minor allele A, MAF 0.48-0.49, negative direction of effect). This association reached the study-wide significance level (p⩽1.2×10-5). SNP rs10503253 was not significantly associated with cognitive functions in our samples. In conclusion, we studied n=3437 individuals and found evidence that a variant in CSMD1 is associated with cognitive function. Additional studies of larger samples with cognitive phenotypes will be needed to further clarify the role of CSMD1 in cognitive phenotypes in health and disease.


Subject(s)
Cognition/physiology , Membrane Proteins/genetics , Adult , Aged , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Neuropsychological Tests , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Tumor Suppressor Proteins
19.
BMC Psychiatry ; 16: 60, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26973142

ABSTRACT

BACKGROUND: Inflammatory processes have been implicated in the etiology of schizophrenia and related psychoses, in which cognitive deficits represent core symptoms. The aim of the present study was to investigate possible associations between the level of the inflammation marker C-reactive protein (CRP) and cognitive performance in patients through the acute phase of psychosis. METHODS: A total of 124 patients were assessed at admittance to hospital and 62 patients were retested at discharge or after 6 weeks at the latest, with measurements of the CRP levels and alternative forms of the Repeatable Battery for the Assessment of Neuropsychological Status. RESULTS: There was an inverse relationship between overall cognitive performance and CRP level at admittance. The association increased in sub-analyses including only patients with schizophrenia. In cognitive subdomain analyses statistically significant inverse associations were found between the CRP level and Delayed memory and Attention, respectively. No associations were found between CRP level and other measures of psychopathology including psychosis symptoms, depression, or functioning. At follow-up the association between CRP level and cognition was no longer present. There was a significant increase in cognitive performance between baseline and follow-up. There was a stronger increase in overall cognition scores in patients with higher baseline CRP levels. CONCLUSIONS: The findings indicate that signs of inflammation may serve as a state-dependent marker of cognitive dysfunctions in acute psychosis. TRIAL REGISTRATION: ClinicalTrials.gov ID; NCT00932529 , registration date: 02.07.2009.


Subject(s)
C-Reactive Protein/metabolism , Cognition Disorders/blood , Cognition Disorders/complications , Psychotic Disorders/blood , Psychotic Disorders/complications , Adolescent , Adult , Aged , Biomarkers/blood , Cognition Disorders/psychology , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Psychotic Disorders/psychology , Schizophrenia/diagnosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL