Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 390(1): 44-54, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169489

ABSTRACT

BACKGROUND: Household air pollution is associated with stunted growth in infants. Whether the replacement of biomass fuel (e.g., wood, dung, or agricultural crop waste) with liquefied petroleum gas (LPG) for cooking can reduce the risk of stunting is unknown. METHODS: We conducted a randomized trial involving 3200 pregnant women 18 to 34 years of age in four low- and middle-income countries. Women at 9 to less than 20 weeks' gestation were randomly assigned to use a free LPG cookstove with continuous free fuel delivery for 18 months (intervention group) or to continue using a biomass cookstove (control group). The length of each infant was measured at 12 months of age, and personal exposures to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm) were monitored starting at pregnancy and continuing until the infants were 1 year of age. The primary outcome for which data are presented in the current report - stunting (defined as a length-for-age z score that was more than two standard deviations below the median of a growth standard) at 12 months of age - was one of four primary outcomes of the trial. Intention-to-treat analyses were performed to estimate the relative risk of stunting. RESULTS: Adherence to the intervention was high, and the intervention resulted in lower prenatal and postnatal 24-hour personal exposures to fine particulate matter than the control (mean prenatal exposure, 35.0 µg per cubic meter vs. 103.3 µg per cubic meter; mean postnatal exposure, 37.9 µg per cubic meter vs. 109.2 µg per cubic meter). Among 3061 live births, 1171 (76.2%) of the 1536 infants born to women in the intervention group and 1186 (77.8%) of the 1525 infants born to women in the control group had a valid length measurement at 12 months of age. Stunting occurred in 321 of the 1171 infants included in the analysis (27.4%) of the infants born to women in the intervention group and in 299 of the 1186 infants included in the analysis (25.2%) of those born to women in the control group (relative risk, 1.10; 98.75% confidence interval, 0.94 to 1.29; P = 0.12). CONCLUSIONS: An intervention strategy starting in pregnancy and aimed at mitigating household air pollution by replacing biomass fuel with LPG for cooking did not reduce the risk of stunting in infants. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Petroleum , Infant , Female , Humans , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Particulate Matter/adverse effects , Particulate Matter/analysis , Cooking , Growth Disorders/epidemiology , Growth Disorders/etiology , Growth Disorders/prevention & control
2.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169488

ABSTRACT

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Biomass , Cooking , Inhalation Exposure , Petroleum , Pneumonia , Female , Humans , Infant , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Cooking/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Pneumonia/etiology , Adolescent , Young Adult , Adult , Internationality , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/etiology
3.
Proc Natl Acad Sci U S A ; 120(1): e2211282119, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574646

ABSTRACT

Growing evidence suggests that fine particulate matter (PM2.5) likely increases the risks of dementia, yet little is known about the relative contributions of different constituents. Here, we conducted a nationwide population-based cohort study (2000 to 2017) by integrating the Medicare Chronic Conditions Warehouse database and two independently sourced datasets of high-resolution PM2.5 major chemical composition, including black carbon (BC), organic matter (OM), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+), and soil dust (DUST). To investigate the impact of long-term exposure to PM2.5 constituents on incident all-cause dementia and Alzheimer's disease (AD), hazard ratios for dementia and AD were estimated using Cox proportional hazards models, and penalized splines were used to evaluate potential nonlinear concentration-response (C-R) relationships. Results using two exposure datasets consistently indicated higher rates of incident dementia and AD for an increased exposure to PM2.5 and its major constituents. An interquartile range increase in PM2.5 mass was associated with a 6 to 7% increase in dementia incidence and a 9% increase in AD incidence. For different PM2.5 constituents, associations remained significant for BC, OM, SO42-, and NH4+ for both end points (even after adjustments of other constituents), among which BC and SO42- showed the strongest associations. All constituents had largely linear C-R relationships in the low exposure range, but most tailed off at higher exposure concentrations. Our findings suggest that long-term exposure to PM2.5 is significantly associated with higher rates of incident dementia and AD and that SO42-, BC, and OM related to traffic and fossil fuel combustion might drive the observed associations.


Subject(s)
Air Pollutants , Air Pollution , Dementia , Humans , Aged , United States/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Cohort Studies , Medicare , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Dust , Dementia/chemically induced , Dementia/epidemiology , Environmental Exposure/adverse effects , China
4.
N Engl J Med ; 387(19): 1735-1746, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36214599

ABSTRACT

BACKGROUND: Exposure during pregnancy to household air pollution caused by the burning of solid biomass fuel is associated with adverse health outcomes, including low birth weight. Whether the replacement of a biomass cookstove with a liquefied petroleum gas (LPG) cookstove would result in an increase in birth weight is unclear. METHODS: We performed a randomized, controlled trial involving pregnant women (18 to <35 years of age and at 9 to <20 weeks' gestation as confirmed on ultrasonography) in Guatemala, India, Peru, and Rwanda. The women were assigned in a 1:1 ratio to use a free LPG cookstove and fuel (intervention group) or to continue using a biomass cookstove (control group). Birth weight, one of four prespecified primary outcomes, was the primary outcome for this report; data for the other three outcomes are not yet available. Birth weight was measured within 24 hours after birth. In addition, 24-hour personal exposures to fine particulate matter (particles with a diameter of ≤2.5 µm [PM2.5]), black carbon, and carbon monoxide were measured at baseline and twice during pregnancy. RESULTS: A total of 3200 women underwent randomization; 1593 were assigned to the intervention group, and 1607 to the control group. Uptake of the intervention was nearly complete, with traditional biomass cookstoves being used at a median rate of less than 1 day per month. After randomization, the median 24-hour personal exposure to fine particulate matter was 23.9 µg per cubic meter in the intervention group and 70.7 µg per cubic meter in the control group. Among 3061 live births, a valid birth weight was available for 94.9% of the infants born to women in the intervention group and for 92.7% of infants born to those in the control group. The mean (±SD) birth weight was 2921±474.3 g in the intervention group and 2898±467.9 g in the control group, for an adjusted mean difference of 19.6 g (95% confidence interval, -10.1 to 49.2). CONCLUSIONS: The birth weight of infants did not differ significantly between those born to women who used LPG cookstoves and those born to women who used biomass cookstoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Birth Weight , Cooking , Particulate Matter , Petroleum , Female , Humans , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Cooking/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Petroleum/analysis , Infant, Newborn , Adolescent , Young Adult , Adult
5.
Environ Sci Technol ; 58(23): 10162-10174, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38810212

ABSTRACT

Residential biomass burning is an important source of black carbon (BC) exposure among rural communities in low- and middle-income countries. We collected 7165 personal BC samples and individual/household level information from 3103 pregnant women enrolled in the Household Air Pollution Intervention Network trial. Women in the intervention arm received free liquefied petroleum gas stoves and fuel throughout pregnancy; women in the control arm continued the use of biomass stoves. Median (IQR) postintervention BC exposures were 9.6 µg/m3 (5.2-14.0) for controls and 2.8 µg/m3 (1.6-4.8) for the intervention group. Using mixed models, we characterized predictors of BC exposure and assessed how exposure contrasts differed between arms by select predictors. Primary stove type was the strongest predictor (R2 = 0.42); the models including kerosene use, kitchen location, education, occupation, or stove use hours also provided additional explanatory power from the base model adjusted only for the study site. Our full, trial-wide, model explained 48% of the variation in BC exposures. We found evidence that the BC exposure contrast between arms differed by study site, adherence to the assigned study stove, and whether the participant cooked. Our findings highlight factors that may be addressed before and during studies to implement more impactful cookstove intervention trials.


Subject(s)
Cooking , Humans , Female , Pregnancy , Adult , Air Pollution, Indoor , Soot , Carbon , Air Pollutants , Environmental Exposure
6.
Environ Res ; 220: 115176, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36584844

ABSTRACT

BACKGROUND: Ambient temperatures are projected to increase in the future due to climate change. Alzheimer's disease (AD) and Alzheimer's disease-related dementia (ADRD) affect millions of individuals and represent substantial health burdens in the US. High temperature may be a risk factor for AD/ADRD outcomes with several recent studies reporting associations between temperature and AD mortality. However, the link between heat and AD morbidity is poorly understood. METHODS: We examined short-term associations between warm-season daily ambient temperature and AD/ADRD emergency department (ED) visits for individuals aged 45 years or above during the warm season (May to October) for up to 14 years (2005-2018) in five US states: California, Missouri, North Carolina, New Jersey, and New York. Daily ZIP code-level maximum, average and minimum temperature exposures were derived from 1 km gridded Daymet products. Associations are assessed using a time-stratified case-crossover design using conditional logistic regression. RESULTS: We found consistent positive short-term effects of ambient temperature among 3.4 million AD/ADRD ED visits across five states. An increase of the 3-day cumulative temperature exposure of daily average temperature from the 50th to the 95th percentile was associated with a pooled odds ratio of 1.042 (95% CI: 1.034, 1.051) for AD/ADRD ED visits. We observed evidence of the association being stronger for patients 65-74 years of age and for ED visits that led to hospital admissions. Temperature associations were also stronger among AD/ADRD ED visits compared to ED visits for other reasons, particularly among patients aged 65-74 years. CONCLUSION: People with AD/ADRD may represent a vulnerable population affected by short-term exposure to high temperature. Our results support the development of targeted strategies to reduce heat-related AD/ADRD morbidity in the context of global warming.


Subject(s)
Alzheimer Disease , Humans , Aged , Seasons , Temperature , Alzheimer Disease/epidemiology , Emergency Service, Hospital , Hot Temperature
7.
Alzheimers Dement ; 19(5): 1858-1864, 2023 05.
Article in English | MEDLINE | ID: mdl-36327171

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) incidence is thought to be higher among Black than White individuals. METHODS: We studied the US Medicare population from 2000 to 2018. Cox regression was used to determine the roles of race and co-morbidities for AD incidence. RESULTS: We studied 11,880,906 Medicare beneficiaries, with 774,548 AD cases. Hazard ratios (HRs) by increasing numbers of co-morbidities (1-7) were 1.51, 2.00, 2.55, 3.16, 2.89, 4.77, and 5.65. Among those with no co-morbidities, Black individuals had a lower rate than those who are White (HR = 0.69), while among those with one more co-morbidities, Black individuals had a higher rate (HR = 1.19). The presence of hypertension increased AD rates by 14% for White individuals, but 69% for those who are Black. DISCUSSION: More co-morbidities was strongly associated with higher AD rates. The higher rates for Black versus White individuals was apparent only for those with co-morbidities and appears driven both by more co-morbidities, and the greater effect of hypertension. HIGHLIGHTS: Black individuals have been shown to have higher Alzheimer's disease (AD) rates than those who are White. Some co-morbidities are known to increase AD risk. Among those In Medicare data with no co-morbidities, Black individuals have less risk than those who are White. Among those with co-morbidities, Black individuals have higher rates than those who are White. Hypertension results in a much stronger increase in AD risk for Black versus White individuals.


Subject(s)
Alzheimer Disease , Hypertension , Humans , Aged , United States/epidemiology , Alzheimer Disease/epidemiology , Medicare , Comorbidity , Hypertension/epidemiology , White
8.
Environ Sci Technol ; 56(11): 7194-7202, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34932337

ABSTRACT

Mounting epidemiological evidence has documented the associations between long-term exposure to multiple air pollutants and increased mortality. There is a pressing need to determine whether risks persist at low concentrations including below current national standards. Air pollution levels have decreased in the United States, and better understanding of the health effects of low-level air pollution is essential for the amendment of National Ambient Air Quality Standards (NAAQS). A nationwide, population-based, open cohort study was conducted to estimate the association between long-term exposure to low-level PM2.5, NO2, O3, and all-cause mortality. The study population included all Medicare enrollees (ages 65 years or older) in the contiguous U.S. from 2001 to 2017. We further defined three low-exposure subcohorts comprised of Medicare enrollees who were always exposed to low-level PM2.5 (annual mean ≤12-µg/m3), NO2 (annual mean ≤53-ppb), and O3 (warm-season mean ≤50-ppb), respectively, over the study period. Of the 68.7-million Medicare enrollees, 33.1% (22.8-million, mean age 75.9 years), 93.8% (64.5-million, mean age 76.2 years), and 65.0% (44.7-million, mean age 75.6 years) were always exposed to low-level annual PM2.5, annual NO2, and warm-season O3 over the study period, respectively. Among the low-exposure cohorts, a 10-µg/m3 increase in PM2.5, 10-ppb increase in NO2, and 10-ppb increase in warm-season O3, were, respectively, associated with an increase in mortality rate ranging between 10 and 13%, 2 and 4%, and 12 and 14% in single-pollutant models, and between 6 and 8%, 1 and 3%, and 9 and 11% in tripollutant models, using three statistical approaches. There was strong evidence of linearity in concentration-response relationships for PM2.5 and NO2 at levels below the current NAAQS, suggesting that no safe threshold exists for health-harmful pollution levels. For O3, the concentration-response relationship shows an increasingly positive association at levels above 40-ppb. In conclusion, exposure to low levels of PM2.5, NO2, and warm-season O3 was associated with an increased risk of all-cause mortality.


Subject(s)
Air Pollutants , Air Pollution , Aged , Air Pollutants/analysis , Air Pollution/analysis , Cohort Studies , Environmental Exposure/analysis , Humans , Medicare , Nitrogen Dioxide/analysis , Particulate Matter/analysis , United States/epidemiology
9.
Environ Res ; 208: 112756, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35065931

ABSTRACT

BACKGROUND: The Household Air Pollution Intervention Network (HAPIN) trial is an ongoing multi-center randomized controlled trial assessing the impact of a liquified petroleum gas (LPG) cookstove and fuel intervention on health. Given the potential impacts of household air pollution (HAP) exposure from burning solid fuels on cardiovascular health during pregnancy, we sought to determine whether baseline exposures to particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), black carbon (BC) and carbon monoxide (CO) were associated with blood pressure among 799 pregnant women in Tamil Nadu, India, one of the HAPIN trial centers. METHODS: Multivariable linear regression models were used to examine the association between 24-h personal exposure to PM2.5/BC/CO and systolic and diastolic blood pressure, controlling for maternal age, body mass index (BMI), mother's education, household wealth, gestational age, and season. At the time of measurement, women were between 9- and 20-weeks of gestation. RESULTS: We found that systolic blood pressure (SBP) and diastolic blood pressure (DBP) were higher in pregnant women exposed to higher levels of HAP, though only the result for CO and DBP reached conventional statistical significance (p < 0.05). We observed a positive association between CO and DBP among the entire study cohort: a 1-log µg/m3 increase in CO exposure was associated with 0.36 mmHg higher DBP (95% confidence interval [CI]: 0.02 to 0.70). The effect was stronger in pregnant women with higher CO exposures (in the 3rd [≥ 0.9 and < 2.1 ppm] and 4th quartiles [≥ 2.1 and ≤ 46.9 ppm]). We also found that pregnant women with PM2.5 exposures in the highest quartile (≥ 129.9 and ≤ 2100 µg/m3) had a borderline significant association (p = 0.054) with DBP compared to those who had PM2.5 exposures in the lowest quartile (≥ 9.4 and < 47.7 µg/m3). No evidence of association was observed for BC exposure and blood pressure. CONCLUSION: This study contributes to limited evidence regarding the relationship between HAP exposure and blood pressure among women during pregnancy, a critical window for both mother and child's life-course health. Results from this cross-sectional study suggest that exposures to PM2.5 and CO from solid fuel use are associated with higher blood pressure in pregnant women during their first or second trimester.


Subject(s)
Air Pollution, Indoor , Blood Pressure , Cooking , Maternal Exposure , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Blood Pressure/physiology , Carbon Monoxide/analysis , Carbon Monoxide/toxicity , Cooking/methods , Cross-Sectional Studies , Female , Gestational Age , Humans , Hypertension/chemically induced , Hypertension/epidemiology , India/epidemiology , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/toxicity , Pregnancy , Pregnancy Complications, Cardiovascular/chemically induced , Pregnancy Complications, Cardiovascular/epidemiology , Rural Health/statistics & numerical data
10.
Environ Res ; 214(Pt 4): 114121, 2022 11.
Article in English | MEDLINE | ID: mdl-36029836

ABSTRACT

Elevated blood pressure (BP) is a leading risk factor for the global burden of disease. Household air pollution (HAP), resulting from the burning of biomass fuels, may be an important cause of elevated BP in resource-poor communities. We examined the exposure-response relationship of personal exposures to HAP -fine particulate matter (PM2.5), carbon monoxide (CO), and black carbon (BC) - with BP measures in women aged 40-79 years across four resource-poor settings in Guatemala, Peru, India and Rwanda. BP was obtained within a day of 24-h personal exposure measurements at baseline, when participants were using biomass for cooking. We used generalized additive models to characterize the shape of the association between BP and HAP, accounting for the interaction of personal exposures and age and adjusting for a priori identified confounders. A total of 418 women (mean age 52.2 ± 7.9 years) were included in this analysis. The interquartile range of exposures to PM2.5 was 42.9-139.5 µg/m3, BC was 6.4-16.1 µg/m3, and CO was 0.5-2.9 ppm. Both SBP and PP were positively associated with PM2.5 exposure in older aged women, achieving statistical significance around 60 years of age. The exact threshold varied by BP measure and PM2.5 exposures being compared. For example, SBP of women aged 65 years was on average 10.8 mm Hg (95% CI 1.0-20.6) higher at 232 µg/m3 of PM2.5 exposure (90th percentile) when compared to that of women of the same age with personal exposures of 10 µg/m3. PP in women aged 65 years was higher for exposures ≥90 µg/m3, with mean differences of 6.1 mm Hg (95% CI 1.8-10.5) and 9.2 mm Hg (95% CI 3.3-15.1) at 139 (75th percentile) and 232 µg/m3 (90th percentile) respectively, when compared to that of women of the same age with PM2.5 exposures of 10 µg/m3. Our findings suggest that reducing HAP exposures may help to reduce BP, particularly among older women.


Subject(s)
Air Pollution, Indoor , Environmental Exposure , Hypertension , Adult , Aged , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Blood Pressure , Cooking , Cross-Sectional Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Hypertension/epidemiology , Middle Aged , Particulate Matter/analysis , Soot
11.
CA Cancer J Clin ; 64(1): 63-9, 2014.
Article in English | MEDLINE | ID: mdl-24327355

ABSTRACT

Silica has been known to cause silicosis for centuries, and evidence that silica causes lung cancer has accumulated over the last several decades. This article highlights 3 important developments in understanding the health effects of silica and preventing illness and death from silica exposure at work. First, recent epidemiologic studies have provided new information about silica and lung cancer. This includes detailed exposure-response data, thereby enabling the quantitative risk assessment needed for regulation. New studies have also shown that excess lung mortality occurs in silica-exposed workers who do not have silicosis and who do not smoke. Second, the US Occupational Safety and Health Administration has recently proposed a new rule lowering the permissible occupational limit for silica. There are approximately 2 million US workers currently exposed to silica. Risk assessments estimate that lowering occupational exposure limits from the current to the proposed standard will reduce silicosis and lung cancer mortality to approximately one-half of the rates predicted under the current standard. Third, low-dose computed tomography scanning has now been proven to be an effective screening method for lung cancer. For clinicians, asking about occupational history to determine if silica exposure has occurred is recommended. If such exposure has occurred, extra attention might be given to the early detection of silicosis and lung cancer, as well as extra emphasis on quitting smoking.


Subject(s)
Lung Neoplasms/chemically induced , Silicon Dioxide/adverse effects , Humans , Occupational Exposure/prevention & control , Risk Assessment , Silicosis/etiology , United States , United States Occupational Safety and Health Administration
12.
Environ Res ; 194: 110690, 2021 03.
Article in English | MEDLINE | ID: mdl-33385391

ABSTRACT

BACKGROUND: The number of studies addressing per- and polyfluoroalkyl substances (PFAS) and cancer is increasing. Many communities have had water contaminated by PFAS, and cancer is one of the important community concerns related to PFAS exposure. OBJECTIVES: We critically reviewed the evidence relating to PFAS and cancer from an epidemiologic standpoint to highlight directions for future research that would be the most likely to meaningfully increase knowledge. METHODS: We conducted a search in PubMed for studies of cancer and PFAS (through 9/20/2020). We identified epidemiologic studies that provided a quantitative estimate for some measure of the association between PFAS and cancer. Here, we review that literature, including several aspects of epidemiologic study design that impact the usefulness of study results. RESULTS: We identified 16 cohort (or case-cohort) studies, 10 case-control studies (4 nested within cohorts and 6 non-nested), 1 cross sectional study and 1 ecologic study. The cancer sites with the most evidence of an association with PFAS are testicular and kidney cancer. There are also some suggestions in a few studies of an association with prostate cancer, but the data are inconsistent. DISCUSSION: Each study's design has strengths and limitations. Weaknesses in study design and methods can, in some cases, lead to questionable associations, but in other cases can make it more difficult to detect true associations, if they are present. Overall, the evidence for an association between cancer and PFAS remains sparse. A variety of studies with different strengths and weaknesses can be helpful to clarify associations between PFAS and cancer. Long term follow-up of large-sized cohorts with large exposure contrasts are most likely to be informative.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Kidney Neoplasms , Case-Control Studies , Cross-Sectional Studies , Fluorocarbons/analysis , Humans , Male , Water
13.
Environ Res ; 202: 111766, 2021 11.
Article in English | MEDLINE | ID: mdl-34331919

ABSTRACT

BACKGROUND: Ambient air pollution has been characterized as a leading cause of mortality worldwide and has been associated with cardiovascular and respiratory diseases. There is increasing evidence that short-term exposure to nitrogen dioxide (NO2), is related to adverse health effects and mortality. METHODS: We conducted a systematic review of short-term NO2 and daily mortality, which were indexed in PubMed and Embase up to June 2021. We calculated random-effects estimates by different continents and globally, and tested for heterogeneity and publication bias. RESULTS: We included 87 articles in our quantitative analysis. NO2 and all-cause as well as cause-specific mortality were positively associated in the main analysis. For all-cause mortality, a 10 ppb increase in NO2 was associated with a 1.58% (95%CI 1.28%-1.88%, I2 = 96.3%, Eggers' test p < 0.01, N = 57) increase in the risk of death. For cause-specific mortality, a 10 ppb increase in NO2 was associated with a 1.72% (95%CI 1.41%-2.04%, I2 = 87.4%, Eggers' test p < 0.01, N = 42) increase in cardiovascular mortality and a 2.05% (95%CI 1.52%-2.59%, I2 = 78.5%, Eggers' test p < 0.01, N = 38) increase in respiratory mortality. In the sensitivity analysis, the meta-estimates for all-cause mortality, cardiovascular and respiratory mortality were nearly identical. The heterogeneity would decline to varying degrees through regional and study-design stratification. CONCLUSIONS: This study provides evidence of an association between short-term exposure to NO2, a proxy for traffic-sourced air pollutants, and all-cause, cardiovascular and respiratory mortality.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Particulate Matter/analysis
14.
Environ Res ; 199: 111226, 2021 08.
Article in English | MEDLINE | ID: mdl-33957138

ABSTRACT

BACKGROUND: Asthma affects millions of people worldwide. Lima, Peru is one of the most polluted cities in the Americas but has insufficient ground PM2.5 (particulate matter that are 2.5 µm or less in diameter) measurements to conduct epidemiologic studies regarding air pollution. PM2.5 estimates from a satellite-driven model have recently been made, enabling a study between asthma and PM2.5. OBJECTIVE: We conducted a daily time-series analysis to determine the association between asthma emergency department (ED) visits and estimated ambient PM2.5 levels in Lima, Peru from 2010 to 2016. METHODS: We used Poisson generalized linear models to regress aggregated counts of asthma on district-level population weighted PM2.5. Indicator variables for hospitals, districts, and day of week were included to account for spatial and temporal autocorrelation while assessing same day, previous day, day before previous and average across all 3-day exposures. We also included temperature and humidity to account for meteorology and used dichotomous percent poverty and gender variables to assess effect modification. RESULTS: There were 103,974 cases of asthma ED visits during the study period across 39 districts in Lima. We found a 3.7% (95% CI: 1.7%-5.8%) increase in ED visits for every interquartile range (IQR, 6.02 µg/m3) increase in PM2.5 same day exposure with no age stratification. For the 0-18 years age group, we found a 4.5% (95% CI: 2.2%-6.8%) increase in ED visits for every IQR increase in PM2.5 same day exposure. For the 19-64 years age group, we found a 6.0% (95% CI: 1.0%-11.0%) increase in ED visits for every IQR in average 3-day exposure. For the 65 years and up age group, we found a 16.0% (95% CI: 7.0%-24.0%) decrease in ED visits for every IQR increase in PM2.5 average 3-day exposure, although the number of visits in this age group was low (4,488). We found no effect modification by SES or gender. DISCUSSION: Results from this study provide additional literature on use of satellite-driven exposure estimates in time-series analyses and evidence for the association between PM2.5 and asthma in a low- and middle-income (LMIC) country.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Asthma/chemically induced , Asthma/epidemiology , Cities , Emergency Service, Hospital , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Peru/epidemiology
15.
Environ Health ; 20(1): 22, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637108

ABSTRACT

BACKGROUND: Global temperatures are projected to rise by ≥2 °C by the end of the century, with expected impacts on infectious disease incidence. Establishing the historic relationship between temperature and childhood diarrhea is important to inform future vulnerability under projected climate change scenarios. METHODS: We compiled a national dataset from Peruvian government data sources, including weekly diarrhea surveillance records, annual administered doses of rotavirus vaccination, annual piped water access estimates, and daily temperature estimates. We used generalized estimating equations to quantify the association between ambient temperature and childhood (< 5 years) weekly reported clinic visits for diarrhea from 2005 to 2015 in 194 of 195 Peruvian provinces. We estimated the combined effect of the mean daily high temperature lagged 1, 2, and 3 weeks, in the eras before (2005-2009) and after (2010-2015) widespread rotavirus vaccination in Peru and examined the influence of varying levels of piped water access. RESULTS: Nationally, an increase of 1 °C in the temperature across the three prior weeks was associated with a 3.8% higher rate of childhood clinic visits for diarrhea [incidence rate ratio (IRR): 1.04, 95% confidence interval (CI): 1.03-1.04]. Controlling for temperature, there was a significantly higher incidence rate of childhood diarrhea clinic visits during moderate/strong El Niño events (IRR: 1.03, 95% CI: 1.01-1.04) and during the dry season (IRR: 1.01, 95% CI: 1.00-1.03). Nationally, there was no evidence that the association between temperature and the childhood diarrhea rate changed between the pre- and post-rotavirus vaccine eras, or that higher levels of access to piped water mitigated the effects of temperature on the childhood diarrhea rate. CONCLUSIONS: Higher temperatures and intensifying El Niño events that may result from climate change could increase clinic visits for childhood diarrhea in Peru. Findings underscore the importance of considering climate in assessments of childhood diarrhea in Peru and globally, and can inform regional vulnerability assessments and mitigation planning efforts.


Subject(s)
Climate Change , Diarrhea/epidemiology , Child, Preschool , El Nino-Southern Oscillation , Humans , Infant , Peru/epidemiology , Temperature
16.
Indoor Air ; 31(5): 1509-1521, 2021 09.
Article in English | MEDLINE | ID: mdl-33749948

ABSTRACT

Household air pollution (HAP) from biomass stoves is a leading risk factor for cardiopulmonary outcomes; however, its toxicity pathways and relationship with inflammation markers are poorly understood. Among 180 adult women in rural Peru, we examined the cross-sectional exposure-response relationship between biomass HAP and markers of inflammation in blood using baseline measurements from a randomized trial. We measured markers of inflammation (CRP, IL-6, IL-10, IL-1ß, and TNF-α) with dried blood spots, 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM2.5 ), black carbon (BC), and carbon monoxide (CO), and 48-h kitchen concentrations of nitrogen dioxide (NO2 ) in a subset of 97 participants. We conducted an exposure-response analysis between quintiles of HAP levels and markers of inflammation. Markers of inflammation were more strongly associated with kitchen area concentrations of BC than PM2.5 . As expected, kitchen area BC concentrations were positively associated with TNF-α (pro-inflammatory) concentrations and negatively associated with IL-10, an anti-inflammatory marker, controlling for confounders in single- and multi-pollutant models. However, contrary to expectations, kitchen area BC and NO2 concentrations were negatively associated with IL-1ß, a pro-inflammatory marker. No associations were identified for IL-6 or CRP, or for any marker in relation to personal exposures.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Environmental Exposure/statistics & numerical data , Adult , Biomarkers/blood , Female , Humans , Inflammation/blood , Peru
17.
Public Health Nutr ; : 1-9, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34889181

ABSTRACT

INTRODUCTION: According to the WHO, anaemia is a severe public health problem when the prevalence is ≥ 40 %. In 2019, in Peru, 40·1 % of children (aged 6 to 35 months) are diagnosed as anaemic. This is a concern since, despite the efforts of the governments to reduce the prevalence, the problem has stagnated since 2011. The treatment applied to deal with anaemia is Fe supplementation. Although Fe is essential for cell function, an excess can produce adverse responses, such as gut inflammation affecting microbiota and resulting in diarrhoeic episodes. OBJECTIVE: To determine the association between diarrhoea and Fe supplementation in children with and without anaemia, controlling for different socio-demographic variables. DESIGN: We conducted via logistic regression to obtain diarrhoea prevalence ratios (PR), adjusted by age, sex, geographic region, water and sanitation service, and rurality. The survey asked for recent episodes of diarrhoea during the last 7 d; similarly, after the consumption of Fe supplements during the last 12 months before the survey. SETTING: Peru. PARTICIPANTS: The Demographic and Family Health Survey (DHS) is conducted annually at home among 14 202 children on average (2009-2019). RESULTS: Fe supplementation in the last 7 d (PR = 1·09) or the last 12 months (PR = 1·19) (P < 0·0001) was associated with an increased risk of diarrhoea. The same association was observed between Fe supplementation and the presence of anaemia. CONCLUSIONS: Fe supplementation is associated with diarrhoea and overuse in children should be avoided.

18.
Alzheimer Dis Assoc Disord ; 34(3): 191-197, 2020.
Article in English | MEDLINE | ID: mdl-32483017

ABSTRACT

BACKGROUND: Norms for the Uniform Data Set Version 3 Neuropsychological Battery are available for cognitively normal individuals based on age, education, and sex; however, these norms do not include race. We provide expanded norms for African Americans and whites. METHODS: Data from 32 Alzheimer's Disease Centers (ADCs) and ADC affiliated cohorts with global Clinical Dementia Rating Scale (CDR) Dementia Staging Instrument scores of 0 were included. Descriptive statistics for each test were calculated by age, sex, race, and education. Multiple linear regressions were conducted to estimate the effect of each demographic variable; squared semipartial correlation coefficients measured the relative importance of variables. RESULTS: There were 8313 participants (16% African American) with complete demographic information, ranging from 6600 to 7885 depending on the test. Lower scores were found for older and less educated groups, and African Americans versus whites. Education was the strongest predictor for most tests, followed in order by age, race, and sex. Quadratic terms were significant for age and education, indicating some nonlinearity, but did not substantially increase R. CONCLUSIONS: Although race-based norms represent incomplete proxies for other sociocultural variables, the appropriate application of these norms is important given the potential to improve diagnostic accuracy and to reduce misclassification bias in cognitive disorders of aging such as Alzheimer disease.


Subject(s)
Aging , Black or African American/statistics & numerical data , Healthy Volunteers , Neuropsychological Tests , White People/statistics & numerical data , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Databases, Factual , Female , Humans , Male , Middle Aged , Neuropsychological Tests/standards , Neuropsychological Tests/statistics & numerical data , United States
19.
Occup Environ Med ; 77(6): 415-417, 2020 06.
Article in English | MEDLINE | ID: mdl-32201386

ABSTRACT

BACKGROUND: Very high exposure to inorganic lead causes serious kidney damage. We have studied workers with occupational exposure and data on blood lead. METHODS: We extended follow-up for 7 more years, for a previously studied cohort of 58 307 male workers who were part of a surveillance programme in 11 different states. Mortality was assessed using the National Death Index, and end-stage renal disease (ESRD) incidence was assessed using the US Renal Data System. We conducted internal analyses via Cox regression adjusting for age, calendar time and race. RESULTS: The cohort was followed for a median of 18 years and had 524 cases of ESRD and 6527 deaths. Average maximum blood lead was 26 µg/dL; the mean year of first blood lead test was 1997. No trends by lead level were seen overall or when restricting to those with 15+ years follow-up. Among non-Caucasians with >15 years of follow-up, there was a positive but inconsistent trend (Rate ratios (RRs) 1.00, 2.10, 1.33, 2.20 and 2.76 for maximum blood lead categories of <20 µg/dL, 20-29 µg/dL, 30 to <40 µg/dL, 40 to ≤50 µg/dL and >50 µg/dL, respectively (p for linear trend 0.26). Those with >15 years of follow-up and birth year <1941 showed a positive trend with increased blood lead (RRs 1.00, 1.14, 1.18, 1.46, 1.66, p trend=0.26). CONCLUSIONS: We found no association between higher lead exposure and ESRD. There were positive but not statistically significant trends of increased risk for non-Caucasians with >15 years of follow-up and for older men with >15 years of follow-up.


Subject(s)
Lead/adverse effects , Occupational Diseases/chemically induced , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/epidemiology , Adolescent , Adult , Aged , Follow-Up Studies , Humans , Lead/blood , Male , Middle Aged , National Institute for Occupational Safety and Health, U.S. , Occupational Exposure/analysis , United States/epidemiology , Young Adult
20.
Environ Res ; 191: 110028, 2020 12.
Article in English | MEDLINE | ID: mdl-32846169

ABSTRACT

BACKGROUND: Household air pollution (HAP) from combustion of biomass fuel, such as wood and animal dung, is among the leading environmental risk factors for preventable disease. Close to half of the world's population relies on biomass cookstoves for their daily cooking needs. Understanding factors that affect HAP can inform measures to maximize the effectiveness of cookstove interventions in a cost-effective manner. However, the impact of kitchen and household characteristics, as well as the presence of secondary stoves, on HAP concentrations is poorly understood in Puno, Peru. OBJECTIVE: To explore how household characteristics explain variability of kitchen area concentrations and personal exposures to CO, PM2.5 and BC from biomass cookstoves among women in rural Peru. METHODS: Household characteristics (including kitchen materials and layout, wealth, and cooking behaviors) and HAP measurements were collected from 180 households in Puno, Peru, from baseline measurements of a randomized trial. Kitchen area concentrations and personal exposures to carbon monoxide (CO), fine particulate matter (PM2.5) and black carbon (BC) were sampled for 48 h. We implemented simple and multivariable linear regression models to determine the associations between household characteristics and both kitchen area concentration and personal exposure to each pollutant. RESULTS: Mean daily kitchen area concentrations and personal exposures to HAP were, on average, 48 times above World Health Organization indoor guidelines for PM2.5. We found that roof type explained the most variability in HAP and was strongly associated with both kitchen area concentrations and personal exposures for all pollutants after adjusting for other household variables. Personal exposures were 27%-36% lower for PM2.5, CO and BC, in households with corrugated metal roofs, compared to roofs made of natural materials (straw, totora or reed) after adjusting for other factors. Higher kitchen area concentrations were also associated with less wealth, owning more animals, or sampling during the dry season in multivariable models. Having a liquefied petroleum gas (LPG) stove and having a chimney were associated with lower personal exposures, but were not associated with kitchen area concentrations. Personal exposures were lower by 21% for PM2.5 and 28% for CO and BC concentrations among participants who had both LPG and biomass stoves compared to those with only biomass cookstoves adjusting for other household factors. CONCLUSIONS: Characterizing HAP within different settings can help identify effective and culturally-relevant solutions to reduce HAP exposures. We found that housing roof type is strongly related to kitchen area concentrations and personal exposures to HAP, perhaps because of greater ventilation in kitchens with metal roofs compared to those with thatch roofs. Although HAP concentrations remained above guidelines for all households, promoting use of metal roof materials and LPG stoves may be actionable interventions that can help reduce exposures to HAP in high-altitude rural Peru and similar settings.


Subject(s)
Air Pollution, Indoor , Air Pollution , Household Articles , Air Pollution, Indoor/analysis , Biomass , Cooking , Environmental Exposure/analysis , Environmental Monitoring , Female , Humans , Particulate Matter/analysis , Peru
SELECTION OF CITATIONS
SEARCH DETAIL