Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Nature ; 630(8018): 866-871, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839964

ABSTRACT

Membranes are widely used for separation processes in applications such as water desalination, batteries and dialysis, and are crucial in key sectors of our economy and society1. The majority of technologically exploited membranes are based on solid polymers and function as passive barriers, whose transport characteristics are governed by their chemical composition and nanostructure. Although such membranes are ubiquitous, it has proved challenging to maximize selectivity and permeability independently, leading to trade-offs between these pertinent characteristics2. Self-assembled biological membranes, in which barrier and transport functions are decoupled3,4, provide the inspiration to address this problem5,6. Here we introduce a self-assembly strategy that uses the interface of an aqueous two-phase system to template and stabilize molecularly thin (approximately 35 nm) biomimetic block copolymer bilayers of scalable area that can exceed 10 cm2 without defects. These membranes are self-healing, and their barrier function against the passage of ions (specific resistance of approximately 1 MΩ cm2) approaches that of phospholipid membranes. The fluidity of these membranes enables straightforward functionalization with molecular carriers that shuttle potassium ions down a concentration gradient with exquisite selectivity over sodium ions. This ion selectivity enables the generation of electric power from equimolar solutions of NaCl and KCl in devices that mimic the electric organ of electric rays.

2.
Opt Express ; 32(4): 5429-5443, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439270

ABSTRACT

Brilliant colors in nature arise from the interference of light with periodic nanostructures resulting in structural color. While such biological photonic structures have long attracted interest in insects and plants, they are little known in other groups of organisms. Unexpected in the kingdom of Amoebozoa, which assembles unicellular organisms, structural colors were observed in myxomycetes, an evolutionary group of amoebae forming macroscopic, fungal-like structures. Previous work related the sparkling appearance of Diachea leucopodia to thin film interference. Using optical and ultrastructural characterization, we here investigated the occurrence of structural color across 22 species representing two major evolutionary clades of myxomycetes including 14 genera. All investigated species showed thin film interference at the peridium, producing colors with hues distributed throughout the visible range that were altered by pigmentary absorption. A white reflective layer of densely packed calcium-rich shells is observed in a compound peridium in Metatrichia vesparium, whose formation and function are still unknown. These results raise interesting questions on the biological relevance of thin film structural colors in myxomycetes, suggesting they may be a by-product of their reproductive cycle.


Subject(s)
Amoebozoa , Myxomycetes , Nanostructures , Calcium , Photons
3.
Soft Matter ; 20(11): 2509-2517, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38389437

ABSTRACT

While artificial photonic materials are typically highly ordered, photonic structures in many species of birds and insects do not possess a long-range order. Studying their order-disorder interplay sheds light on the origin of the photonic band gap. Here, we investigated the scale morphology of the Anoplophora graafi longhorn beetle. Combining small-angle X-ray scattering and slice-and-view FIB-SEM tomography with molecular dynamics and optical simulations, we characterised the chitin sphere assemblies within blue and green A. graafi scales. The low volume fraction of spheres and the number of their nearest neighbours are incompatible with any known close-packed sphere morphology. A short-range diamond lattice with long-range disorder best describes the sphere assembly, which will inspire the development of new colloid-based photonic materials.


Subject(s)
Coleoptera , Animals , Coleoptera/chemistry , Photons
4.
Small ; 19(6): e2205438, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36464635

ABSTRACT

Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20-150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.

5.
Nature ; 550(7677): 469-474, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045384

ABSTRACT

Diverse forms of nanoscale architecture generate structural colour and perform signalling functions within and between species. Structural colour is the result of the interference of light from approximately regular periodic structures; some structural disorder is, however, inevitable in biological organisms. Is this disorder functional and subject to evolutionary selection, or is it simply an unavoidable outcome of biological developmental processes? Here we show that disordered nanostructures enable flowers to produce visual signals that are salient to bees. These disordered nanostructures (identified in most major lineages of angiosperms) have distinct anatomies but convergent optical properties; they all produce angle-dependent scattered light, predominantly at short wavelengths (ultraviolet and blue). We manufactured artificial flowers with nanoscale structures that possessed tailored levels of disorder in order to investigate how foraging bumblebees respond to this optical effect. We conclude that floral nanostructures have evolved, on multiple independent occasions, an effective degree of relative spatial disorder that generates a photonic signature that is highly salient to insect pollinators.


Subject(s)
Bees/physiology , Color , Flowers/anatomy & histology , Light , Nanostructures/chemistry , Pollination/physiology , Animals , Magnoliopsida/anatomy & histology , Phylogeny , Surface Properties
6.
Small ; 18(20): e2200592, 2022 05.
Article in English | MEDLINE | ID: mdl-35426236

ABSTRACT

The brilliant appearance of Easter Egg weevils, genus Pachyrhynchus (Coleoptera, Curculionidae), originates from complex dielectric nanostructures within their elytral scales and elytra. Previous work, investigating singular members of the Pachyrhynchus showed the presence of either quasi-ordered or ordered 3D photonic crystals based on the single diamond ( Fd3¯m ) symmetry in their scales. However, little is known about the diversity of the structural coloration mechanisms within the family. Here, the optical properties within Pachyrhynchus are investigated by systematically identifying their spectral and structural characteristics. Four principal traits that vary their appearance are identified and the evolutionary history of these traits to identify ecological trends are reconstructed. The results indicate that the coloration mechanisms across the Easter Egg weevils are diverse and highly plastic across closely related species with features appearing at multiple independent times across their phylogeny. This work lays a foundation for a better understanding of the various forms of quasi-ordered and ordered diamond photonic crystal within arthropods.


Subject(s)
Coleoptera , Nanostructures , Weevils , Animals , Coleoptera/chemistry , Diamond , Nanostructures/chemistry , Photons
7.
Nat Mater ; 20(6): 841-850, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33479526

ABSTRACT

Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F- sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle's surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/ß-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides.

8.
Chimia (Aarau) ; 76(10): 826-832, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-38069694

ABSTRACT

Creating color through the self-assembly of specific building blocks to fabricate photonic morphologies is a promising and intriguing approach to reproducing the flamboyant visual effects and dynamic properties observed in the natural world. However, the complexity and lack of robustness in the manufacture of these nanostructured materials hinder their technical exploitation on a large scale. To overcome such limitations, here we present a novel methodology to create bioinspired photonic pigments as dispersed and micrometer-scale particles based on highly ordered concentric lamellar microspheres made of block copolymers. First, we introduce the fabrication protocol and the advantages of this approach compared to the traditional colloidal self-assembly. Then, we discuss some possible future research directions focused on developing hybrid organic-inorganic photonic pigments with enhanced dielectric contrast, reduced scattering, and specific functionalities. Finally, we speculate on possible applications for these structures that go beyond their use as simple photonic pigments.

9.
Small ; 17(44): e2103061, 2021 11.
Article in English | MEDLINE | ID: mdl-34558188

ABSTRACT

Polymers are essential components of many nanostructured materials. However, the refractive indices of common polymers fall in a relatively narrow range between 1.4 and 1.6. Here, it is demonstrated that loading commercially-available polymers with large concentrations of a plant-based pigment can effectively enhance their refractive index. For polystyrene (PS) loaded with 67 w/w% ß-carotene (BC), a peak value of 2.2 near the absorption edge at 531 nm is achieved, while maintaining values above 1.75 across longer wavelengths of the visible spectrum. Despite high pigment loadings, this blend maintains the thermoforming ability of PS, and BC remains molecularly dispersed. Similar results are demonstrated for the plant-derived polymer ethyl cellulose (EC). Since the refractive index enhancement is intimately connected to the introduction of strong absorption, it is best suited to applications where light travels short distances through the material, such as reflectors and nanophotonic systems. Enhanced reflectance from films is experimentally demonstrated, as large as sevenfold for EC at selected wavelengths. Theoretical calculations highlight that this simple strategy can significantly increase light scattering by nanoparticles and enhance the performance of Bragg reflectors.


Subject(s)
Nanoparticles , Nanostructures , Polymers , Polystyrenes , Refractometry
10.
Macromol Rapid Commun ; 42(24): e2100522, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34523759

ABSTRACT

Approaches that enable the preparation of robust polymeric photonic particles are of interest for the development of nonfading and highly reflective pigments for applications such as paints and display technologies. Here, the preparation of photonic particles that display structural color in both, aqueous suspension and the dry solid state is reported. This is achieved by exploiting the confined self-assembly of a supramolecular comb-like block copolymer (BCP) that microphase separates into a well-ordered lamellar morphology with dimensions that promote a photonic bandgap in the visible range. The comb-like BCP is formed by robust ionic interactions between poly(styrene-b-4-vinyl-pyridine) (PS-b-P4VP) BCP and dodecylbenzene sulfonic acid (DBSA), which selectively interacts with P4VP blocks. The components are combined in chloroform, and an aqueous emulsion is prepared. Evaporation of the organic solvent leads to the formation of solid microparticles with an onion-like 3D morphology. These photonic pigments display brilliant colors with reflectance spectra featuring pronounced optical bandgaps across the entire visible wavelength range with a peak reflectivity of 80-90%.

11.
Nano Lett ; 20(5): 3642-3650, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32250635

ABSTRACT

Arrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices. Via block copolymer templating, we produce Ni75Fe25 single-gyroid and double-gyroid (an inversion pair of single-gyroids) nanostructures with a 42 nm unit cell and 11 nm diameter struts, comparable to the exchange length in Ni-Fe. We visualize their magnetization distributions via off-axis electron holography with nanometer spatial resolution and interpret the patterns using finite-element micromagnetic simulations. Our results suggest an intricate, frustrated remanent state which is ferromagnetic but without a unique equilibrium configuration, opening new possibilities for collective phenomena in magnetism, including 3D magnonic crystals and unconventional computing.

12.
Faraday Discuss ; 223(0): 136-144, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-32726379

ABSTRACT

For a number of optical applications, it is advantageous to precisely tune the refractive index of a liquid. Here, we harness a well-established concept in optics for this purpose. The Kramers-Kronig relation provides a physical connection between the spectral variation of the (real) refractive index and the absorption coefficient. In particular, a sharp spectral variation of the absorption coefficient gives rise to either an enhancement or reduction of the refractive index in the spectral vicinity of this variation. By using bright commodity dyes that fulfil this absorption requirement, we demonstrate the use of the Kramers-Kronig relation to predictively obtain refractive index values in water solutions that are otherwise only attained with toxic specialised liquids.

13.
J Chem Phys ; 152(10): 104703, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171206

ABSTRACT

Organic-inorganic perovskites are one of the most promising photovoltaic materials for the design of next generation solar cells. The lead-based perovskite prepared with methylammonium and iodide was the first in demonstrating high power conversion efficiency, and it remains one of the most used materials today. However, perovskites prepared by mixing several halides and several cations systematically yield higher efficiencies than "pure" methylammonium lead iodide (MAPbI3) devices. In this work, we unravel the excited-state properties of a mixed-halide (iodide and bromide) and mixed-cation (methylammonium and formamidinium) perovskite. Combining time-resolved photoluminescence, transient absorption, and optical-pump-terahertz-probe experiments with density functional theory calculations, we show that the population of higher-lying excited states in the mixed material increases the lifetime of photogenerated charge carriers upon well above-bandgap excitation. We suggest that alloying different halides and different cations reduces the structural symmetry of the perovskite, which partly releases the selection rules to populate the higher-energy states upon light absorption. Our investigation thus shows that mixed halide perovskites should be considered as an electronically different material than MAPbI3, paving the way toward further materials optimization and improved power conversion efficiency of perovskite solar cells.

14.
J Exp Biol ; 222(Pt 24)2019 12 12.
Article in English | MEDLINE | ID: mdl-31767735

ABSTRACT

Nature's nanostructures can bring about vivid and iridescent colours seen in many insects, notably in beetles and butterflies. While the intense structural colours can be advantageous for display purposes, they may also be appealing to predators and therefore constitute an evolutionary disadvantage. Animals often employ absorption and scattering in order to reduce the directionality of the reflected light and thereby enhance their camouflage. Here, we investigated the monkey beetle Hoplia argentea using microspectrophotometry, electron microscopy, fluorimetry and optical modelling. We show that the dull green dorsal colour comes from the nanostructured scales on the elytra. The nanostructure consists of a multi-layered photonic structure covered by a filamentous layer. The filamentous layer acts as a spatial diffuser of the specular reflection from the multilayer and suppresses the iridescence. This combination leads to a colour-stable and angle-independent green reflection that probably enhances the camouflage of the beetles in their natural habitat.


Subject(s)
Coleoptera/physiology , Color , Animals , Female , Fluorometry , Male , Microscopy, Electron, Scanning , Microspectrophotometry , Models, Biological
15.
Nano Lett ; 18(12): 7560-7569, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30407014

ABSTRACT

Metal oxide microparticles with well-defined internal mesostructures are promising materials for a variety of different applications, but practical routes to such materials that allow the constituent structural length scales to be precisely tuned have thus far been difficult to realize. Herein, we describe a novel platform methodology that utilizes self-assembled block copolymer (BCP) microparticles synthesized by dispersion polymerization in supercritical CO2 (scCO2) as universal structure directing agents for both hydrolytic and nonhydrolytic sol-gel routes to metal oxides. Spherically structured poly(methyl methacrylate- block-4-vinylpyridine) (PMMA- b-P4VP) BCP microparticles are translated into a series of the corresponding organic/inorganic composites and pure inorganic derivatives with a high degree of fidelity for the metal oxides TiO2 and LiFePO4. The final products are comprised of particles close to 1 µm in size with a highly ordered internal morphology of interconnected spheres between 20-40 nm in size. Furthermore, our approach is readily scalable, enabling grams of pure or carbon-coated TiO2 and LiFePO4, respectively, to be fabricated in a facile two step route involving ambient temperature mixing and drying stages. Given that both length scales within these BCP microparticles can be controlled independently by minor variations in the reagent quantities used, the present general strategy could represent a milestone in the design and synthesis of hierarchical metal oxides with completely tunable dimensions.

16.
Chimia (Aarau) ; 73(1): 29-34, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30813993

ABSTRACT

Nature fabricates materials with properties that are difficult to reproduce with manmade counterparts. For example, nacre, composed of layers of CaCO3 crystals that are interspaced with small quantities of organic components, is one of the toughest known biomaterials. To produce materials with such fascinating proper- ties, nature has established processes that offer an excellent control over their structure and local composition. Inspired by nacre, a lot of work has been devoted to the fabrication and characterization of composites with similar structures that nevertheless display distinctly different mechanical properties. The first part of this review summarizes methods used to produce nacre-inspired layered composites, their influence on the composition, structure, and mechanical properties. A key difference between the formation of nacre and that of nacre-inspired materials is the mechanism and kinetics of the formation of the inorganic components. In an endeavor to gain a better control over the mechanical properties of the inorganic platelets contained in nacre-inspired composites, the second part of this review describes methods to control the shape, structure, and orientation of CaCO3 formed in organic scaffolds.

17.
Chimia (Aarau) ; 73(1): 25-28, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30813992

ABSTRACT

For many decades, it has been challenging to synthesize auxetic materials at the molecular level. Auxetic materials exhibit counterintuitive behavior; they expand perpendicularly to the direction in which they are stretched. An aromatic macrocycle containing a sequence of N-substituted and N-unsubstituted amides was designed to resemble the re-entrant structure found in macromolecular auxetic materials. Upon application of tensile force, bent cis amides change to linear trans amides. This was anticipated to trigger the expansion of the macrocycle perpendicular to the direction of the applied force. To investigate the proposed configurational change by atom force microscopy (AFM), we designed and prepared a cis-trans aramide motif incorporated into an end-functionalized polymer which ensured covalent attachment to the AFM tip. At large extensions, polymer chains were envisioned to unfold and induce cis-trans isomerization.

18.
Chimia (Aarau) ; 73(1): 47-50, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30813997

ABSTRACT

The natural world is teeming with color, which originates either from the wavelength-dependent absorp- tion of light by pigments or from scattering from nanoscale structures, or both. While the latter ' structural color ' has been a topic of intense study in recent years, the most vibrant colors in nature involve contributions from both structure and pigment. The study of structure-pigment interactions in biological systems is currently in its infancy and could inspire more technological applications, such as sustainable, toxin-free pigments and more efficient light harvesting.

19.
Small ; 14(46): e1802291, 2018 11.
Article in English | MEDLINE | ID: mdl-30222245

ABSTRACT

The rapid development of synchrotrons has massively increased the speed at which experiments can be performed, while new techniques have increased the amount of raw data collected during each experiment. While this has created enormous new opportunities, it has also created tremendous challenges for national facilities and users. With the huge increase in data volume, the manual analysis of data is no longer possible. As a result, only a fraction of the data collected during the time- and money-expensive synchrotron beam-time is analyzed and used to deliver new science. Additionally, the lack of an appropriate data analysis environment limits the realization of experiments that generate a large amount of data in a very short period of time. The current lack of automated data analysis pipelines prevents the fine-tuning of beam-time experiments, further reducing their potential usage. These effects, collectively known as the "data deluge," affect synchrotrons in several different ways including fast data collection, available local storage, data management systems, and curation of the data. This review highlights the Big Data strategies adopted nowadays at synchrotrons, documenting this novel and promising hybridization between science and technology, which promise a dramatic increase in the number of scientific discoveries.

20.
Small ; 14(46): e1802401, 2018 11.
Article in English | MEDLINE | ID: mdl-30252206

ABSTRACT

The efficacy with which solvent vapor annealing (SVA) can control block copolymer self-assembly has so far been demonstrated primarily for the simplest class of copolymer, the linear diblock copolymer. Adding a third distinct block-thereby creating a triblock terpolymer-not only provides convenient access to complex continuous network morphologies, particularly the gyroid phases, but also opens up a route toward the fabrication of novel nanoscale devices such as optical metamaterials. Such applications, however, require the generation of well-ordered 3D continuous networks, which in turn requires a detailed understanding of the SVA process in terpolymer network morphologies. Here, in situ grazing-incidence small-angle X-ray scattering (GISAXS) is employed to study the self-assembly of a gyroid-forming triblock terpolymer during SVA, revealing the effects of several key SVA parameters on the morphology, lateral order, and, in particular, its preservation in the dried film. The robustness of the terpolymer gyroid morphology is a key requirement for successful SVA, allowing the exploration of annealing parameters which may enable the generation of films with long-range order, e.g., for optical metamaterial applications.

SELECTION OF CITATIONS
SEARCH DETAIL