Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Anal Chem ; 91(21): 13475-13484, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31584797

ABSTRACT

In this paper, we present an easy-to-follow procedure for the analysis of tissue sections from 3D cell cultures (spheroids) by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) and laser scanning confocal microscopy (LSCM). MALDI MSI was chosen to detect the distribution of the drug of interest, while fluorescence immunohistochemistry (IHC) followed by LSCM was used to localize the cells featuring specific markers of viability, proliferation, apoptosis and metastasis. The overlay of the mass spectrometry (MS) and IHC spheroid images, typically without any morphological features, required fiducial-based coregistration. The MALDI MSI protocol was optimized in terms of fiducial composition and antigen epitope preservation to allow MALDI MSI to be performed and directly followed by IHC analysis on exactly the same spheroid section. Once MS and IHC images were coregistered, the quantification of the MS and IHC signals was performed by an algorithm evaluating signal intensities along equidistant layers from the spheroid boundary to its center. This accurate colocalization of MS and IHC signals showed limited penetration of the clinically tested drug perifosine into spheroids during a 24 h period, revealing the fraction of proliferating and promigratory/proinvasive cells present in the perifosine-free areas, decrease of their abundance in the perifosine-positive regions, and distinguishing between apoptosis resulting from hypoxia/nutrient deprivation and drug exposure.


Subject(s)
Fiducial Markers , Fluorescent Antibody Technique , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cell Culture Techniques , HT29 Cells , Humans , Imaging, Three-Dimensional , Microscopy, Confocal
2.
Microsc Microanal ; 25(6): 1311-1322, 2019 12.
Article in English | MEDLINE | ID: mdl-31571549

ABSTRACT

Spheroids-three-dimensional aggregates of cells grown from a cancer cell line-represent a model of living tissue for chemotherapy investigation. Distribution of chemotherapeutics in spheroid sections was determined using the matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). Proliferating or apoptotic cells were immunohistochemically labeled and visualized by laser scanning confocal fluorescence microscopy (LSCM). Drug efficacy was evaluated by comparing coregistered MALDI MSI and LSCM data of drug-treated spheroids with LSCM only data of untreated control spheroids. We developed a fiducial-based workflow for coregistration of low-resolution MALDI MS with high-resolution LSCM images. To allow comparison of drug and cell distribution between the drug-treated and untreated spheroids of different shapes or diameters, we introduced a common diffusion-related coordinate, the distance from the spheroid boundary. In a procedure referred to as "peeling", we correlated average drug distribution at a certain distance with the average reduction in the affected cells between the untreated and the treated spheroids. This novel approach makes it possible to differentiate between peripheral cells that died due to therapy and the innermost cells which died naturally. Two novel algorithms-for MALDI MS image denoising and for weighting of MALDI MSI and LSCM data by the presence of cell nuclei-are also presented.


Subject(s)
Antineoplastic Agents/pharmacology , Microscopy, Confocal/methods , Neoplasms/drug therapy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Antineoplastic Agents/pharmacokinetics , Humans , Models, Theoretical , Spheroids, Cellular/drug effects
3.
Cytometry A ; 87(8): 759-72, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26033916

ABSTRACT

Reliable 3D detection of diffraction-limited spots in fluorescence microscopy images is an important task in subcellular observation. Generally, fluorescence microscopy images are heavily degraded by noise and non-specifically stained background, making reliable detection a challenging task. In this work, we have studied the performance and parameter sensitivity of eight recent methods for 3D spot detection. The study is based on both 3D synthetic image data and 3D real confocal microscopy images. The synthetic images were generated using a simulator modeling the complete imaging setup, including the optical path as well as the image acquisition process. We studied the detection performance and parameter sensitivity under different noise levels and under the influence of uneven background signal. To evaluate the parameter sensitivity, we propose a novel measure based on the gradient magnitude of the F1 score. We measured the success rate of the individual methods for different types of the image data and found that the type of image degradation is an important factor. Using the F1 score and the newly proposed sensitivity measure, we found that the parameter sensitivity is not necessarily proportional to the success rate of a method. This also provided an explanation why the best performing method for synthetic data was outperformed by other methods when applied to the real microscopy images. On the basis of the results obtained, we conclude with the recommendation of the HDome method for data with relatively low variations in quality, or the Sorokin method for image sets in which the quality varies more. We also provide alternative recommendations for high-quality images, and for situations in which detailed parameter tuning might be deemed expensive.


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Algorithms , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Sensitivity and Specificity
4.
Front Oncol ; 10: 581365, 2020.
Article in English | MEDLINE | ID: mdl-33344237

ABSTRACT

Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.

5.
Stem Cells Int ; 2019: 1375807, 2019.
Article in English | MEDLINE | ID: mdl-30863449

ABSTRACT

The eukaryotic nucleus is a highly complex structure that carries out multiple functions primarily needed for gene expression, and among them, transcription seems to be the most fundamental. Diverse approaches have demonstrated that transcription takes place at discrete sites known as transcription factories, wherein RNA polymerase II (RNAP II) is attached to the factory and immobilized while transcribing DNA. It has been proposed that transcription factories promote chromatin loop formation, creating long-range interactions in which relatively distant genes can be transcribed simultaneously. In this study, we examined long-range interactions between the POU5F1 gene and genes previously identified as being POU5F1 enhancer-interacting, namely, CDYL, TLE2, RARG, and MSX1 (all involved in transcriptional regulation), in human pluripotent stem cells (hPSCs) and their early differentiated counterparts. As a control gene, RUNX1 was used, which is expressed during hematopoietic differentiation and not associated with pluripotency. To reveal how these long-range interactions between POU5F1 and the selected genes change with the onset of differentiation and upon RNAP II inhibition, we performed three-dimensional fluorescence in situ hybridization (3D-FISH) followed by computational simulation analysis. Our analysis showed that the numbers of long-range interactions between specific genes decrease during differentiation, suggesting that the transcription of monitored genes is associated with pluripotency. In addition, we showed that upon inhibition of RNAP II, long-range associations do not disintegrate and remain constant. We also analyzed the distance distributions of these genes in the context of their positions in the nucleus and revealed that they tend to have similar patterns resembling normal distribution. Furthermore, we compared data created in vitro and in silico to assess the biological relevance of our results.

6.
J Extracell Vesicles ; 8(1): 1560808, 2019.
Article in English | MEDLINE | ID: mdl-30719239

ABSTRACT

Extracellular vesicles (EVs) function as important conveyers of information between cells and thus can be exploited as drug delivery systems or disease biomarkers. Transmission electron microscopy (TEM) remains the gold standard method for visualisation of EVs, however the analysis of individual EVs in TEM images is time-consuming if performed manually. Therefore, we present here a software tool for computer-assisted evaluation of EVs in TEM images. TEM ExosomeAnalyzer detects EVs based on their shape and edge contrast criteria and subsequently analyses their size and roundness. The software tool is compatible with common negative staining protocols and isolation methods used in the field of EV research; even with challenging TEM images (EVs both lighter and darker than the background, images containing artefacts or precipitated stain, etc.). If the fully-automatic analysis fails to produce correct results, users can promptly adjust the detected seeds of EVs as well as their boundaries manually. The performance of our tool was evaluated for three different modes with variable levels of human interaction, using two datasets with various heterogeneity. The semi-automatic mode analyses EVs with high success rate in the homogenous dataset (F1 score 0.9094, Jaccard coefficient 0.8218) as well as in the highly heterogeneous dataset containing EVs isolated from cell culture medium and patient samples (F1 score 0.7619, Jaccard coefficient 0.7553). Moreover, the extracted size distribution profiles of EVs isolated from malignant ascites of ovarian cancer patients overlap with those derived by cryo-EM and are comparable to NTA- and TRPS-derived data. In summary, TEM ExosomeAnalyzer is an easy-to-use software tool for evaluation of many types of vesicular microparticles and is available at http://cbia.fi.muni.cz/exosome-analyzer free of charge for non-commercial and research purposes. The web page contains also detailed description how to use the software tool including a video tutorial.

7.
Cell Cycle ; 14(24): 3851-63, 2015.
Article in English | MEDLINE | ID: mdl-26645646

ABSTRACT

The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication.


Subject(s)
Cell Cycle/physiology , Chromatin/metabolism , Histones/metabolism , Cell Cycle/genetics , DNA Replication/genetics , DNA Replication/physiology , G2 Phase/genetics , HL-60 Cells , Humans , Mass Spectrometry , Nucleosomes/metabolism , S Phase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL