Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Mol Cell ; 84(17): 3209-3222.e5, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39191261

ABSTRACT

RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.


Subject(s)
Chromatin , Drosophila melanogaster , Nucleosomes , Transcription, Genetic , Animals , Nucleosomes/metabolism , Nucleosomes/genetics , Chromatin/metabolism , Chromatin/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/enzymology , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Chromatin Assembly and Disassembly , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics
2.
Cell ; 154(4): 888-903, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953118

ABSTRACT

Cellular-state information between generations of developing cells may be propagated via regulatory regions. We report consistent patterns of gain and loss of DNase I-hypersensitive sites (DHSs) as cells progress from embryonic stem cells (ESCs) to terminal fates. DHS patterns alone convey rich information about cell fate and lineage relationships distinct from information conveyed by gene expression. Developing cells share a proportion of their DHS landscapes with ESCs; that proportion decreases continuously in each cell type as differentiation progresses, providing a quantitative benchmark of developmental maturity. Developmentally stable DHSs densely encode binding sites for transcription factors involved in autoregulatory feedback circuits. In contrast to normal cells, cancer cells extensively reactivate silenced ESC DHSs and those from developmental programs external to the cell lineage from which the malignancy derives. Our results point to changes in regulatory DNA landscapes as quantitative indicators of cell-fate transitions, lineage relationships, and dysfunction.


Subject(s)
Cell Lineage , Gene Expression Regulation, Developmental , Animals , Cell Differentiation , Cell Transformation, Neoplastic , Chromatin/metabolism , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Feedback , Humans , Mice , Stem Cells/metabolism
3.
Cell ; 150(6): 1274-86, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22959076

ABSTRACT

The combinatorial cross-regulation of hundreds of sequence-specific transcription factors (TFs) defines a regulatory network that underlies cellular identity and function. Here we use genome-wide maps of in vivo DNaseI footprints to assemble an extensive core human regulatory network comprising connections among 475 sequence-specific TFs and to analyze the dynamics of these connections across 41 diverse cell and tissue types. We find that human TF networks are highly cell selective and are driven by cohorts of factors that include regulators with previously unrecognized roles in control of cellular identity. Moreover, we identify many widely expressed factors that impact transcriptional regulatory networks in a cell-selective manner. Strikingly, in spite of their inherent diversity, all cell-type regulatory networks independently converge on a common architecture that closely resembles the topology of living neuronal networks. Together, our results provide an extensive description of the circuitry, dynamics, and organizing principles of the human TF regulatory network.


Subject(s)
Gene Regulatory Networks , Transcription Factors/metabolism , Animals , DNA Footprinting , Deoxyribonuclease I/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Humans , Organ Specificity
4.
Genome Res ; 33(3): 427-434, 2023 03.
Article in English | MEDLINE | ID: mdl-36788024

ABSTRACT

Low-level DNA N 6-methyldeoxyadenosine (DNA-m6A) has recently been reported across various eukaryotes. Although anti-m6A antibody-based approaches are commonly used to measure DNA-m6A levels, this approach is known to be confounded by DNA secondary structures, RNA contamination, and bacterial contamination. To evaluate for these confounding features, we introduce an approach for systematically validating the selectivity of antibody-based DNA-m6A methods and use a highly selective anti-DNA-m6A antibody to reexamine patterns of DNA-m6A in C. reinhardtii, A. thaliana, and D. melanogaster Our findings raise caution about the use of antibody-based methods for endogenous m6A quantification and mapping in eukaryotes.


Subject(s)
Drosophila melanogaster , Eukaryota , Animals , Eukaryota/genetics , Drosophila melanogaster/genetics , RNA/genetics , Antibodies , DNA , Genomics
5.
Hum Genet ; 143(4): 559-605, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436667

ABSTRACT

Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.


Subject(s)
Genetic Variation , Humans , Gene Expression Regulation , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/classification , Genetic Predisposition to Disease
6.
Genet Med ; 26(8): 101164, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38757444

ABSTRACT

PURPOSE: The ClinGen Actionability Working Group (AWG) developed an evidence-based framework to generate actionability reports and scores of gene-condition pairs in the context of secondary findings from genome sequencing. Here we describe the expansion of the framework to include actionability assertions. METHODS: Initial development of the actionability rubric was based on previously scored adult gene-condition pairs and individual expert evaluation. Rubric refinement was iterative and based on evaluation, feedback, and discussion. The final rubric was pragmatically evaluated via integration into actionability assessments for 27 gene-condition pairs. RESULTS: The resulting rubric has a 4-point scale (limited, moderate, strong, and definitive) and uses the highest-scoring outcome-intervention pair of each gene-condition pair to generate a preliminary assertion. During AWG discussions, predefined criteria and factors guide discussion to produce a consensus assertion for a gene-condition pair, which may differ from the preliminary assertion. The AWG has retrospectively generated assertions for all previously scored gene-condition pairs and are prospectively asserting on gene-condition pairs under assessment, having completed over 170 adult and 188 pediatric gene-condition pairs. CONCLUSION: The AWG expanded its framework to provide actionability assertions to enhance the clinical value of their resources and increase their utility as decision aids regarding return of secondary findings.


Subject(s)
Evidence-Based Medicine , Humans , Evidence-Based Medicine/methods , Genetic Testing/methods , Incidental Findings , Whole Genome Sequencing
7.
Ann Neurol ; 85(6): 921-926, 2019 06.
Article in English | MEDLINE | ID: mdl-30937933

ABSTRACT

SLC1A2 is a trimeric transporter essential for clearing glutamate from neuronal synapses. Recurrent de novo SLC1A2 missense variants cause a severe, early onset developmental and epileptic encephalopathy via an unclear mechanism. We demonstrate that all 3 variants implicated in this condition localize to the trimerization domain of SLC1A2, and that the Leu85Pro variant acts via a dominant negative mechanism to reduce, but not eliminate, wild-type SLC1A2 protein localization and function. Finally, we demonstrate that treatment of a 20-month-old SLC1A2-related epilepsy patient with the SLC1A2-modulating agent ceftriaxone did not result in a significant change in daily spasm count. ANN NEUROL 2019;85:921-926.


Subject(s)
Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Excitatory Amino Acid Transporter 2/genetics , Genetic Variation/genetics , Amino Acid Sequence , Ceftriaxone/therapeutic use , Child, Preschool , Epilepsy, Generalized/drug therapy , Excitatory Amino Acid Transporter 2/chemistry , Female , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Protein Structure, Secondary
8.
J Inherit Metab Dis ; 43(6): 1165-1172, 2020 11.
Article in English | MEDLINE | ID: mdl-32713002

ABSTRACT

Adult-onset noncirrhotic hyperammonemia (NCH) is poorly understood and has a high morbidity and mortality. To elucidate the etiology and management of NCH, we performed a retrospective analysis of 23 adults (median age 51) with NCH treated between 2014 and 2020 at two academic medical centers. Hyperammonemia was diagnosed in all cases during the evaluation of altered mental status, with 22% presenting with seizures. Peak ammonia levels were >200 µmol/L in 70% of cases. Defects in ammonia metabolism were assessed using urea cycle biochemical testing, germline genetic testing, and testing for urease-producing infectious agents. Ammonia metabolism defects in these cases appear attributable to four major sources: (a) infection with urease-producing organism (n = 5); (b) previously undiagnosed inborn errors of metabolism (IEMs) (n = 4); (c) clinical exposures causing acquired urea cycle dysfunction (n = 6); and (d) unexplained acquired urea cycle dysfunction (uaUCD) (n = 8), as evidenced by biochemical signatures of urea cycle dysfunction without a genetic or clinical exposure. Severe protein malnutrition appeared to be a reversible risk factor for uaUCD. Overall, 13% of our cohort died prior to resolution of hyperammonemia, 26% died after hyperammonemia resolution, 57% survived after having reversible neurological changes, and 4% survived with irreversible neurological changes. Renal replacement therapy for ammonia clearance was often utilized for patients with an ammonia level above 250 µmol/L and patients were frequently empirically treated with antibiotics targeting urea-splitting organisms. Our study demonstrates that acquired urea cycle dysfunction, IEMs and urease-producing infections are major sources of adult-onset NCH and highlights successful management strategies for adult-onset NCH.


Subject(s)
Hyperammonemia/diagnosis , Urea Cycle Disorders, Inborn/diagnosis , Adult , Age of Onset , Aged , Ammonia/blood , Female , Humans , Hyperammonemia/etiology , Male , Middle Aged , Retrospective Studies , Seizures/complications , Survival Analysis , Urea/metabolism , Young Adult
9.
Nature ; 515(7527): 365-70, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409825

ABSTRACT

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Mammals/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , DNA Footprinting , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Humans , Mice
10.
Am J Respir Cell Mol Biol ; 60(4): 388-398, 2019 04.
Article in English | MEDLINE | ID: mdl-30335480

ABSTRACT

Genome-wide association studies (GWAS) have identified multiple associations with emphysema apicobasal distribution (EABD), but the biological functions of these variants are unknown. To characterize the functions of EABD-associated variants, we integrated GWAS results with 1) expression quantitative trait loci (eQTL) from the Genotype Tissue Expression (GTEx) project and subjects in the COPDGene (Genetic Epidemiology of COPD) study and 2) cell type epigenomic marks from the Roadmap Epigenomics project. On the basis of these analyses, we selected a variant near ACVR1B (activin A receptor type 1B) for functional validation. SNPs from 168 loci with P values less than 5 × 10-5 in the largest GWAS meta-analysis of EABD were analyzed. Eighty-four loci overlapped eQTL, with 12 of these loci showing greater than 80% likelihood of harboring a single, shared GWAS and eQTL causal variant. Seventeen cell types were enriched for overlap between EABD loci and Roadmap Epigenomics marks (permutation P < 0.05), with the strongest enrichment observed in CD4+, CD8+, and regulatory T cells. We selected a putative causal variant, rs7962469, associated with ACVR1B expression in lung tissue for additional functional investigation, and reporter assays confirmed allele-specific regulatory activity for this variant in human bronchial epithelial and Jurkat immune cell lines. ACVR1B expression levels exhibit a nominally significant association with emphysema distribution. EABD-associated loci are preferentially enriched in regulatory elements of multiple cell types, most notably T-cell subsets. Multiple EABD loci colocalize to regulatory elements that are active across multiple tissues and cell types, and functional analyses confirm the presence of an EABD-associated functional variant that regulates ACVR1B expression, indicating that transforming growth factor-ß signaling plays a role in the EABD phenotype. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).


Subject(s)
Activin Receptors, Type I/genetics , Genetic Predisposition to Disease/genetics , Pulmonary Emphysema/genetics , Transforming Growth Factor beta1/metabolism , Cell Line, Tumor , Genome-Wide Association Study , Humans , Jurkat Cells , Lung/pathology , Polymorphism, Single Nucleotide/genetics , Proof of Concept Study , Quantitative Trait Loci/genetics , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL