Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Emerg Infect Dis ; 26(1): 143-147, 2020 01.
Article in English | MEDLINE | ID: mdl-31661057

ABSTRACT

In 2018, a 15-year-old female adolescent in Australia was infected with swine influenza A(H3N2) variant virus. The virus contained hemagglutinin and neuraminidase genes derived from 1990s-like human seasonal viruses and internal protein genes from influenza A(H1N1)pdm09 virus, highlighting the potential risk that swine influenza A virus poses to human health in Australia.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human/virology , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Adolescent , Animals , Australia/epidemiology , Female , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/etiology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Phylogeny , Swine , Swine Diseases/transmission
2.
J Virol ; 92(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29875251

ABSTRACT

Global swine populations infected with influenza A viruses pose a persistent pandemic risk. With the exception of a few countries, our understanding of the genetic diversity of swine influenza viruses is limited, hampering control measures and pandemic risk assessment. Here we report the genomic characteristics and evolutionary history of influenza A viruses isolated in Australia from 2012 to 2016 from two geographically isolated swine populations in the states of Queensland and Western Australia. Phylogenetic analysis with an expansive human and swine influenza virus data set comprising >40,000 sequences sampled globally revealed evidence of the pervasive introduction and long-term establishment of gene segments derived from several human influenza viruses of past seasons, including the H1N1/1977, H1N1/1995, H3N2/1968, and H3N2/2003, and the H1N1 2009 pandemic (H1N1pdm09) influenza A viruses, and a genotype that contained gene segments derived from the past three pandemics (1968, reemerged 1977, and 2009). Of the six human-derived gene lineages, only one, comprising two viruses isolated in Queensland during 2012, was closely related to swine viruses detected from other regions, indicating a previously undetected circulation of Australian swine lineages for approximately 3 to 44 years. Although the date of introduction of these lineages into Australian swine populations could not be accurately ascertained, we found evidence of sustained transmission of two lineages in swine from 2012 to 2016. The continued detection of human-origin influenza virus lineages in swine over several decades with little or unpredictable antigenic drift indicates that isolated swine populations can act as antigenic archives of human influenza viruses, raising the risk of reemergence in humans when sufficient susceptible populations arise.IMPORTANCE We describe the evolutionary origins and antigenic properties of influenza A viruses isolated from two separate Australian swine populations from 2012 to 2016, showing that these viruses are distinct from each other and from those isolated from swine globally. Whole-genome sequencing of virus isolates revealed a high genotypic diversity that had been generated exclusively through the introduction and establishment of human influenza viruses that circulated in past seasons. We detected six reassortants with gene segments derived from human H1N1/H1N1pdm09 and various human H3N2 viruses that circulated during various periods since 1968. We also found that these swine viruses were not related to swine viruses collected elsewhere, indicating independent circulation. The detection of unique lineages and genotypes in Australia suggests that isolated swine populations that are sufficiently large can sustain influenza virus for extensive periods; we show direct evidence of a sustained transmission for at least 4 years between 2012 and 2016.


Subject(s)
Genetic Variation , Influenza A virus/classification , Influenza A virus/isolation & purification , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Swine/virology , Animals , Genotype , Humans , Influenza A virus/genetics , Molecular Epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Phylogeny , Queensland/epidemiology , Swine Diseases/epidemiology , Western Australia/epidemiology
3.
Emerg Infect Dis ; 21(3): 511-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25695754

ABSTRACT

In March 2014, avian influenza in poultry in Laos was caused by an emergent influenza A(H5N6) virus. Genetic analysis indicated that the virus had originated from reassortment of influenza A(H5N1) clade 2.3.2.1b, variant clade 2.3.4, and influenza A(H6N6) viruses that circulate broadly in duck populations in southern and eastern China.


Subject(s)
Influenza A virus/classification , Influenza A virus/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Reassortant Viruses , Animals , Chick Embryo , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Laos/epidemiology , Molecular Sequence Data , Neuraminidase/genetics , Phylogeny , Poultry , Viral Proteins/genetics
4.
Transbound Emerg Dis ; 69(2): 297-307, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33400387

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.


Subject(s)
COVID-19 , Ferrets , Animals , Australia , COVID-19/veterinary , COVID-19 Vaccines , Humans , SARS-CoV-2
5.
Microbiol Resour Announc ; 10(26): e0026321, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34197195

ABSTRACT

Here, we report the complete genome sequence of the African swine fever virus (ASFV) isolate ASFV/Timor-Leste/2019/1, isolated from a domestic pig during the first outbreak of ASF in Timor-Leste in 2019. Using target enrichment short-read Illumina data combined with long-read Oxford Nanopore data, we assembled a full-length genome sequence of 192,237 bp.

6.
Viruses ; 13(3)2021 03 08.
Article in English | MEDLINE | ID: mdl-33800329

ABSTRACT

Significant mortalities of racing pigeons occurred in Australia in late 2011 associated with a pigeon paramyxovirus serotype 1 (PPMV-1) infection. The causative agent, designated APMV-1/pigeon/Australia/3/2011 (P/Aus/3/11), was isolated from diagnostic specimens in specific pathogen free (SPF) embryonated eggs and was identified by a Newcastle Disease virus (NDV)-specific RT-PCR and haemagglutination inhibition (HI) test using reference polyclonal antiserum specific for NDV. The P/Aus/3/11 strain was further classified as PPMV-1 using the HI test and monoclonal antibody 617/161 by HI and phylogenetic analysis of the fusion gene sequence. The isolate P/Aus/3/11 had a slow haemagglutin-elution rate and was inactivated within 45 min at 56 °C. Cross HI tests generated an R value of 0.25, indicating a significant antigenic difference between P/Aus/3/11 and NDV V4 isolates. The mean death time (MDT) of SPF eggs infected with the P/Aus/3/11 isolate was 89.2 hr, characteristic of a mesogenic pathotype, consistent with other PPMV-1 strains. The plaque size of the P/Aus/3/11 isolate on chicken embryo fibroblast (CEF) cells was smaller than those of mesogenic and velogenic NDV reference strains, indicating a lower virulence phenotype in vitro and challenge of six-week-old SPF chickens did not induce clinical signs. However, sequence analysis of the fusion protein cleavage site demonstrated an 112RRQKRF117 motif, which is typical of a velogenic NDV pathotype. Phylogenetic analysis indicated that the P/Aus/3/11 isolate belongs to a distinct subgenotype within class II genotype VI of avian paramyxovirus type 1. This is the first time this genotype has been detected in Australia causing disease in domestic pigeons and is the first time since 2002 that an NDV with potential for virulence has been detected in Australia.


Subject(s)
Avulavirus/genetics , Avulavirus/isolation & purification , Columbidae/virology , Genome, Viral , Genotype , Phylogeny , Animals , Avulavirus/classification , Avulavirus/pathogenicity , Chickens/virology , Hemagglutination Inhibition Tests , Specific Pathogen-Free Organisms , Victoria , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology , Virulence , Zygote/virology
7.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33972565

ABSTRACT

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

8.
Viruses ; 11(5)2019 05 26.
Article in English | MEDLINE | ID: mdl-31130699

ABSTRACT

The embryonated chicken egg (ECE) is routinely used for the laboratory isolation and adaptation of Bluetongue virus (BTV) in vitro. However, its utility as an alternate animal model has not been fully explored. In this paper, we evaluated the pathogenesis of BTV in ovo using a pathogenic isolate of South African BTV serotype 3 (BTV-3) derived from the blood of an infected sheep. Endothelio- and neurotropism of BTV-3 were observed by immunohistochemistry of non-structural protein 1 (NS1), NS3, NS3/3a, and viral protein 7 (VP7) antigens. In comparing the pathogenicity of BTV from infectious sheep blood with cell-culture-passaged BTV, including virus propagated through a Culicoides-derived cell line (KC) or ECE, we found virus attenuation in ECE following cell-culture passage. Genomic analysis of the consensus sequences of segments (Seg)-2, -5, -6, -7, -8, -9, and -10 identified several nucleotide and amino-acid mutations among the cell-culture-propagated BTV-3. Deep sequencing analysis revealed changes in BTV-3 genetic diversity in various genome segments, notably a reduction of Seg-7 diversity following passage in cell culture. Using this novel approach to investigate BTV pathogenicity in ovo, our findings support the notion that pathogenic BTV becomes attenuated in cell culture and that this change is associated with virus quasispecies evolution.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Genetic Variation , Animals , Bluetongue/metabolism , Bluetongue/pathology , Cell Culture Techniques , Cell Line , Cells, Cultured , Chick Embryo , Genetic Fitness , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Sheep , Virus Replication
9.
PLoS Negl Trop Dis ; 7(11): e2560, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24278494

ABSTRACT

Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal's limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal.


Subject(s)
Genetic Variation , Phylogeography , Rabies virus/classification , Rabies virus/genetics , Rabies/veterinary , Rabies/virology , Animals , Cluster Analysis , Humans , Molecular Epidemiology , Molecular Sequence Data , Nepal/epidemiology , RNA, Viral/genetics , Rabies virus/isolation & purification , Sequence Analysis, DNA , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL