Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Main subject
Country/Region as subject
Language
Journal subject
Publication year range
1.
BMC Evol Biol ; 13: 114, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23738594

ABSTRACT

BACKGROUND: Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. RESULTS: Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. CONCLUSIONS: The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown bears and red foxes colonized Japan's northern island Hokkaido at least three times, all lineages being most closely related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case where species that occupy similar ecological niches also exhibit similar phylogeographic histories.


Subject(s)
Foxes/genetics , Animals , Bayes Theorem , Carnivora/classification , Carnivora/genetics , DNA, Mitochondrial/genetics , Fossils , Foxes/classification , Ice Cover , North America , Phylogeography
2.
Ecol Evol ; 11(13): 8528-8541, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257914

ABSTRACT

AIM: Connectivity conservation is ideally based on empirical information on how landscape heterogeneity influences species-specific movement and gene flow. Here, we present the first large-scale evaluation of landscape impacts on genetic connectivity in the European wildcat (Felis silvestris), a flagship and umbrella species for connectivity conservation across Europe. LOCATION: The study was carried out in the core area of the distributional range of wildcats in Germany, covering about 186,000 km2 of a densely populated and highly fragmented landscape. METHODS: We used data of 975 wildcats genotyped at 14 microsatellites and an individual-based landscape genetic framework to assess the importance of twelve landscape variables for explaining observed genetic connectivity. For this, we optimized landscape resistance surfaces for all variables and compared their relative impacts using multiple regression on distance matrices and commonality analysis. RESULTS: Genetic connectivity was best explained by a synergistic combination of six landscape variables and isolation by distance. Of these variables, road density had by far the strongest individual impact followed by synergistic effects of agricultural lands and settlements. Subsequent analyses involving different road types revealed that the strong effect of road density was largely due to state roads, while highways and federal roads had a much smaller, and county roads only a negligible impact. MAIN CONCLUSIONS: Our results highlight that landscape-wide genetic connectivity in wildcats across Germany is strongly shaped by the density of roads and in particular state roads, with higher densities providing larger resistance to successful dispersal. These findings have important implications for conservation planning, as measures to mitigate fragmentation effects of roads (e.g., over- or underpasses) often focus on large, federally managed transportation infrastructures. While these major roads exert local barrier effects, other road types can be more influential on overall connectivity, as they are more abundant and more widespread across the landscape.

3.
Ecol Evol ; 8(4): 2290-2304, 2018 02.
Article in English | MEDLINE | ID: mdl-29468044

ABSTRACT

Hybridization between wild species and their domestic congeners is considered a major threat for wildlife conservation. Genetic integrity of the European wildcat, for instance, is a concern as they are outnumbered by domestic cats by several orders of magnitude throughout its range. We genotyped 1,071 individual wildcat samples obtained from hair traps and roadkills collected across the highly fragmented forests of western Central Europe, in Germany and Luxembourg, to assess domestic cat introgression in wildcats in human-dominated landscapes. Analyses using a panel of 75 autosomal SNPs suggested a low hybridization rate, with 3.5% of wildcat individuals being categorized as F1, F2, or backcrosses to either parental taxon. We report that results based on a set of SNPs were more consistent than on a set of 14 microsatellite markers, showed higher accuracy to detect hybrids and their class in simulation analyses, and were less affected by underlying population structure. Our results strongly suggest that very high hybridization rates previously reported for Central Europe may be partly due to inadequate choice of markers and/or sampling design. Our study documents that an adequately selected SNP panel for hybrid detection may be used as an alternative to commonly applied microsatellite markers, including studies relying on noninvasively collected samples. In addition, our finding of overall low hybridization rates in Central European wildcats provides an example of successful wildlife coexistence in human-dominated, fragmented landscapes.

SELECTION OF CITATIONS
SEARCH DETAIL