Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 42(6): 3894-907, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24413561

ABSTRACT

Conditional mutagenesis using Cre recombinase expressed from tissue specific promoters facilitates analyses of gene function and cell lineage tracing. Here, we describe two novel dual-promoter-driven conditional mutagenesis systems designed for greater accuracy and optimal efficiency of recombination. Co-Driver employs a recombinase cascade of Dre and Dre-respondent Cre, which processes loxP-flanked alleles only when both recombinases are expressed in a predetermined temporal sequence. This unique property makes Co-Driver ideal for sequential lineage tracing studies aimed at unraveling the relationships between cellular precursors and mature cell types. Co-InCre was designed for highly efficient intersectional conditional transgenesis. It relies on highly active trans-splicing inteins and promoters with simultaneous transcriptional activity to reconstitute Cre recombinase from two inactive precursor fragments. By generating native Cre, Co-InCre attains recombination rates that exceed all other binary SSR systems evaluated in this study. Both Co-Driver and Co-InCre significantly extend the utility of existing Cre-responsive alleles.


Subject(s)
Integrases/metabolism , Mutagenesis , Recombinases/metabolism , Animals , Brain/metabolism , Cell Line , Genes, Reporter , HEK293 Cells , Humans , Mice , Neocortex/metabolism , Recombination, Genetic
2.
Oncogenesis ; 7(9): 73, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237500

ABSTRACT

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates a plethora of downstream signaling pathways essential for cell migration, proliferation and death, processes that are exploited by cancer cells during malignant progression. These well-established tumorigenic activities, together with its high expression and activity in different cancer types, highlight FAK as an attractive target for cancer therapy. We have assessed and characterized the therapeutic potential and the biological effects of BI 853520, a novel small chemical inhibitor of FAK, in several preclinical mouse models of breast cancer. Treatment with BI 853520 elicits a significant reduction in primary tumor growth caused by an anti-proliferative activity by BI 853520. In contrast, BI 853520 exerts effects with varying degrees of robustness on the different stages of the metastatic cascade. Together, the data demonstrate that the repression of FAK activity by the specific FAK inhibitor BI 853520 offers a promising anti-proliferative approach for cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL