Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 21(8): 848-856, 2020 08.
Article in English | MEDLINE | ID: mdl-32632291

ABSTRACT

Rational design of chimeric antigen receptors (CARs) with optimized anticancer performance mandates detailed knowledge of how CARs engage tumor antigens and how antigen engagement triggers activation. We analyzed CAR-mediated antigen recognition via quantitative, single-molecule, live-cell imaging and found the sensitivity of CAR T cells toward antigen approximately 1,000-times reduced as compared to T cell antigen-receptor-mediated recognition of nominal peptide-major histocompatibility complexes. While CARs outperformed T cell antigen receptors with regard to antigen binding within the immunological synapse, proximal signaling was significantly attenuated due to inefficient recruitment of the tyrosine-protein kinase ZAP-70 to ligated CARs and its reduced concomitant activation and subsequent release. Our study exposes signaling deficiencies of state-of-the-art CAR designs, which presently limit the efficacy of CAR T cell therapies to target tumors with diminished antigen expression.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Receptors, Chimeric Antigen/immunology , Humans
2.
Nat Immunol ; 19(5): 487-496, 2018 05.
Article in English | MEDLINE | ID: mdl-29662172

ABSTRACT

T cell antigen recognition requires T cell antigen receptors (TCRs) engaging MHC-embedded antigenic peptides (pMHCs) within the contact region of a T cell with its conjugated antigen-presenting cell. Despite micromolar TCR:pMHC affinities, T cells respond to even a single antigenic pMHC, and higher-order TCRs have been postulated to maintain high antigen sensitivity and trigger signaling. We interrogated the stoichiometry of TCRs and their associated CD3 subunits on the surface of living T cells through single-molecule brightness and single-molecule coincidence analysis, photon-antibunching-based fluorescence correlation spectroscopy and Förster resonance energy transfer measurements. We found exclusively monomeric TCR-CD3 complexes driving the recognition of antigenic pMHCs, which underscores the exceptional capacity of single TCR-CD3 complexes to elicit robust intracellular signaling.


Subject(s)
Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation/immunology , CD3 Complex/chemistry , CD3 Complex/immunology , Mice , Mice, Transgenic
3.
Nat Immunol ; 17(12): 1352-1360, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27776107

ABSTRACT

RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.


Subject(s)
Actins/metabolism , B-Lymphocytes/immunology , Cytoskeleton/metabolism , DNA-Binding Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Immunologic Deficiency Syndromes/genetics , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , Adolescent , Angiogenesis Inhibitors/pharmacology , B-Lymphocytes/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/genetics , Child , Cytotoxicity, Immunologic/genetics , DNA Mutational Analysis , Dyneins/metabolism , Female , HEK293 Cells , Humans , Immunoglobulin Class Switching/genetics , Immunologic Deficiency Syndromes/drug therapy , Jurkat Cells , Killer Cells, Natural/drug effects , Lenalidomide , Male , Mutation/genetics , Pedigree , RNA, Small Interfering/genetics , T-Lymphocytes/drug effects , Thalidomide/analogs & derivatives , Thalidomide/pharmacology
4.
EMBO Rep ; 24(11): e57842, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37768718

ABSTRACT

Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.


Subject(s)
Histocompatibility Antigens Class II , T-Lymphocytes , Peptides/metabolism , Antigens , Receptors, Antigen, T-Cell
5.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468643

ABSTRACT

T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.


Subject(s)
Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , DNA/immunology , Major Histocompatibility Complex/genetics , Receptors, Antigen, T-Cell/chemistry , Animals , Antigen-Presenting Cells/cytology , CD4-Positive T-Lymphocytes/cytology , DNA/chemistry , DNA/genetics , Gene Expression , Ligands , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lymphocyte Activation , Mice , Nucleic Acid Conformation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Primary Cell Culture , Protein Binding , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Spleen/cytology , Spleen/immunology
6.
Eur J Immunol ; 51(4): 848-863, 2021 04.
Article in English | MEDLINE | ID: mdl-33345332

ABSTRACT

Upon generation of monoclonal antibodies to the T cell antigen receptor/CD3 (TCR/CD3) complex, we isolated mAb MT3, whose reactivity correlates inversely with the production of IFN-γ by human peripheral blood T lymphocytes. Using eukaryotic expression cloning, we identified the MT3 antigen as myelin-and-lymphocyte (MAL) protein. Flow cytometry analysis demonstrates high surface expression of MAL on all naïve CD4+ T cells whereas MAL expression is diminished on central memory- and almost lost on effector memory T cells. MAL- T cells proliferate strongly in response to stimulation with CD3/CD28 antibodies, corroborating that MAL+ T cells are naïve and MAL- T cells memory subtypes. Further, resting MAL- T cells harbor a larger pool of Ser59- and Tyr394- double phosphorylated lymphocyte-specific kinase (Lck), which is rapidly increased upon in vitro restimulation. Previously, lack of MAL was reported to prevent transport of Lck, the key protein tyrosine kinase of TCR/CD3 signaling to the cell membrane, and to result in strongly impaired human T cell activation. Here, we show that knocking out MAL did not significantly affect Lck membrane localization and immune synapse recruitment, or transcriptional T cell activation. Collectively, our results indicate that loss of MAL is associated with activation-induced differentiation of human T cells but not with impaired membrane localization of Lck or TCR signaling capacity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Myelin and Lymphocyte-Associated Proteolipid Proteins/immunology , Animals , CD28 Antigens/immunology , CD28 Antigens/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Flow Cytometry , Gene Expression/immunology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Jurkat Cells , Lymphocyte Activation/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mice , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Phosphorylation , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
7.
Allergy ; 77(8): 2431-2445, 2022 08.
Article in English | MEDLINE | ID: mdl-35357709

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. METHODS: We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. RESULTS: PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. CONCLUSION: The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin G , Pandemics/prevention & control , Rabbits , Spike Glycoprotein, Coronavirus/immunology
8.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Article in English | MEDLINE | ID: mdl-34242699

ABSTRACT

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Inflammation/drug therapy , Liver/drug effects , Ursodeoxycholic Acid/analogs & derivatives , Animals , CD8-Positive T-Lymphocytes/drug effects , Disease Models, Animal , Inflammation/physiopathology , Liver/physiopathology , Mice , Mice, Inbred C57BL , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use
9.
J Biol Chem ; 293(22): 8600-8613, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29669808

ABSTRACT

The plasminogen system is essential for dissolution of fibrin clots, and in addition, it is involved in a wide variety of other physiological processes, including proteolytic activation of growth factors, cell migration, and removal of protein aggregates. On the other hand, uncontrolled plasminogen activation contributes to many pathological processes (e.g. tumor cells' invasion in cancer progression). Moreover, some virulent bacterial species (e.g. Streptococci or Borrelia) bind human plasminogen and hijack the host's plasminogen system to penetrate tissue barriers. Thus, the conversion of plasminogen to the active serine protease plasmin must be tightly regulated. Here, we show that human lactoferrin, an iron-binding milk glycoprotein, blocks plasminogen activation on the cell surface by direct binding to human plasminogen. We mapped the mutual binding sites to the N-terminal region of lactoferrin, encompassed also in the bioactive peptide lactoferricin, and kringle 5 of plasminogen. Finally, lactoferrin blocked tumor cell invasion in vitro and also plasminogen activation driven by Borrelia Our results explain many diverse biological properties of lactoferrin and also suggest that lactoferrin may be useful as a potential tool for therapeutic interventions to prevent both invasive malignant cells and virulent bacteria from penetrating host tissues.


Subject(s)
Borrelia/metabolism , Fibrinolysin/metabolism , Fibrinolysis , Lactoferrin/metabolism , Plasminogen/antagonists & inhibitors , Streptococcus/metabolism , Cell Movement , Cells, Cultured , Crystallography, X-Ray , Humans , Lactoferrin/chemistry , Lactoferrin/genetics , Plasminogen/metabolism , Protein Conformation
10.
Nat Methods ; 13(8): 661-4, 2016 08.
Article in English | MEDLINE | ID: mdl-27295310

ABSTRACT

We present a method to robustly discriminate clustered from randomly distributed molecules detected with techniques based on single-molecule localization microscopy, such as PALM and STORM. The approach is based on deliberate variation of labeling density, such as titration of fluorescent antibody, combined with quantitative cluster analysis, and it thereby circumvents the problem of cluster artifacts generated by overcounting of blinking fluorophores. The method was used to analyze nanocluster formation in resting and activated immune cells.


Subject(s)
Artifacts , Cell Membrane/metabolism , Fluorescent Dyes/chemistry , Membrane Proteins/metabolism , Microscopy, Fluorescence/methods , Nanostructures/chemistry , Animals , Antibodies, Monoclonal/chemistry , CHO Cells , Cluster Analysis , Cricetulus , Humans , Jurkat Cells , Light , Membrane Proteins/chemistry
11.
Allergy ; 74(3): 483-494, 2019 03.
Article in English | MEDLINE | ID: mdl-30338531

ABSTRACT

BACKGROUND: Macrophages can be converted in vitro into immunoregulatory M2b macrophages in the presence of immune complexes (ICs), but the role of the specific subclasses IgG1 or IgG4 in this phenotypic and functional change is not known. OBJECTIVE: We aimed to refine the original method by applying precisely defined ICs of the subclasses IgG4 or IgG1 constructed by two independent methods. METHODS: Monocyte-derived macrophages (MDMs) were treated with M-CSF, followed by IL-4/IL-13 to induce the M2a allergic phenotype. To mimic unspecific or allergen-specific ICs, plates were coated with myeloma IgG1 or IgG4, or with grass pollen allergen Phl p 5 followed by recombinant human Phl p 5-specific IgG1 or IgG4. M2a polarized macrophages were then added, cultured, and examined for cellular markers and cytokines by flow cytometry, ELISA, and rtPCR. Alternatively, immune complexes with IgG1 or IgG4 were formed using protein L. RESULTS: IgG4 ICs down regulated CD163 and CD206 on M2a cells, and significantly increased IL-10, IL-6, TNFα, and CCL1 secretion, indicating a shift to an M2b-like phenotype. Treatment with IgG4 ICs resulted in expression of FcγRII and down modulation of FcγRII compared with IgG1 treated cells (P = 0.0335) or untreated cells (P < 0.00001). CONCLUSION: Immune complexes with subclasses IgG1 and IgG4 can in vitro be generated by plate absorption, and in fluid form by protein L. Cross-linking of FcγRIIb by the IgG4 subclass redirects pro-allergic M2a macrophages to an M2b-like immunosuppressive phenotype. This suggests an interplay of macrophages with IgG4 in immune tolerance, likely relevant in allergen immunotherapy.


Subject(s)
Immune Tolerance , Immunoglobulin G/immunology , Macrophage Activation/immunology , Macrophages/immunology , Phenotype , Allergens/immunology , Antigen-Antibody Complex/immunology , Biomarkers , Cytokines/metabolism , Gene Expression Profiling , Humans , Immunophenotyping , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Receptors, IgG/metabolism
12.
J Immunol ; 198(6): 2468-2478, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28148733

ABSTRACT

Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147-dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around the G proteins RAP1B and GNB1, the kinases PKCß, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation- and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function.


Subject(s)
Basigin/metabolism , Biomarkers, Tumor/metabolism , Cytoskeleton/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Multiprotein Complexes/metabolism , Proteomics , T-Lymphocytes/physiology , Basigin/genetics , Cell Growth Processes , Endoplasmic Reticulum Chaperone BiP , GTP-Binding Proteins/metabolism , Gene Ontology , Gene Transfer Techniques , Humans , Jurkat Cells , Lymphocyte Activation , Phosphorylation , Protein Binding , Signal Transduction , Stress, Physiological
13.
Brain ; 141(8): 2329-2342, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29860501

ABSTRACT

X-linked adrenoleukodystrophy is caused by ATP-binding cassette transporter D1 (ABCD1) mutations and manifests by default as slowly progressive spinal cord axonopathy with associated demyelination (adrenomyloneuropathy). In 60% of male cases, however, X-linked adrenoleukodystrophy converts to devastating cerebral inflammation and demyelination (cerebral adrenoleukodystrophy) with infiltrating blood-derived monocytes and macrophages and cytotoxic T cells that can only be stopped by allogeneic haematopoietic stem cell transplantation or gene therapy at an early stage of the disease. Recently, we identified monocytes/macrophages but not T cells to be severely affected metabolically by ABCD1 deficiency. Here we found by whole transcriptome analysis that, although monocytes of patients with X-linked adrenoleukodystrophy have normal capacity for macrophage differentiation and phagocytosis, they are pro-inflammatory skewed also in patients with adrenomyloneuropathy in the absence of cerebral inflammation. Following lipopolysaccharide activation, the ingestion of myelin debris, normally triggering anti-inflammatory polarization, did not fully reverse the pro-inflammatory status of X-linked adrenoleukodystrophy macrophages. Immunohistochemistry on post-mortem cerebral adrenoleukodystrophy lesions reflected the activation pattern by prominent presence of enlarged lipid-laden macrophages strongly positive for the pro-inflammatory marker co-stimulatory molecule CD86. Comparative analyses of lesions with matching macrophage density in cases of cerebral adrenoleukodystrophy and acute multiple sclerosis showed a similar extent of pro-inflammatory activation but a striking reduction of anti-inflammatory mannose receptor (CD206) and haemoglobin-haptoglobin receptor (CD163) expression on cerebral adrenoleukodystrophy macrophages. Accordingly, ABCD1-deficiency leads to an impaired plasticity of macrophages that is reflected in incomplete establishment of anti-inflammatory responses, thus possibly contributing to the devastating rapidly progressive demyelination in cerebral adrenoleukodystrophy that only in rare cases arrests spontaneously. These findings emphasize monocytes/macrophages as crucial therapeutic targets for preventing or stopping myelin destruction in patients with X-linked adrenoleukodystrophy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Adrenoleukodystrophy/immunology , Macrophages/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/physiology , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/physiopathology , Adult , Cell Plasticity/genetics , Cell Plasticity/physiology , Demyelinating Diseases/metabolism , Humans , Macrophages/physiology , Male , Middle Aged , Monocytes/metabolism , Monocytes/physiology , Myelin Sheath/metabolism , White People , Exome Sequencing/methods
14.
J Immunol ; 197(6): 2229-38, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27534550

ABSTRACT

Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) ß, a GPI-anchored protein belonging to the folate receptor family. As FRß shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRß, it represents a promising target for future therapeutic strategies. In this study, we performed affinity purification and mass spectrometric analysis of the protein microenvironment of FRß in the plasma membrane of human FRß(+) macrophages and FRß-transduced monocytic THP-1 cells. In this manner, we identified a novel role of FRß: that is, we report functional interactions of FRß with receptors mediating cellular adhesion, in particular the CD11b/CD18 ß2 integrin heterodimer complement receptor type 3/Mac-1. This interaction results in impeded adhesion of FRß(+) human primary macrophages and THP-1 cells to collagen in comparison with their FRß(-) counterparts. We further show that FRß is only expressed by human macrophages when differentiated with M-CSF. These findings thus identify FRß as a novel CD11b/CD18 regulator for trafficking and homing of a subset of macrophages on collagen.


Subject(s)
CD11b Antigen/physiology , CD18 Antigens/physiology , Collagen/pharmacology , Folate Receptor 2/physiology , Macrophages/physiology , Cell Adhesion , Cell Movement , Cell Proliferation , Cells, Cultured , Folic Acid/metabolism , Humans , Tetradecanoylphorbol Acetate/pharmacology
15.
J Immunol ; 196(3): 1387-99, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26729804

ABSTRACT

The Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown. In the current study, we show that silencing of CD147 in human T cells increases IL-2 production without affecting the TCR proximal signaling components. We mapped the immunosuppressive moieties of CD147 to its transmembrane domain and Ig-like domain II. Using affinity purification combined with mass spectrometry, we determined the domain specificity of CD147 interaction partners and identified the calcium exporter plasma membrane calcium ATPase isoform 4 (PMCA4) as the interaction partner of the immunosuppressive moieties of CD147. CD147 does not control the proper membrane localization of PMCA4, but PMCA4 is essential for the CD147-dependent inhibition of IL-2 expression via a calcium-independent mechanism. In summary, our data show that CD147 interacts via its immunomodulatory domains with PMCA4 to bypass TCR proximal signaling and inhibit IL-2 expression.


Subject(s)
Basigin/immunology , Interleukin-2/biosynthesis , Lymphocyte Activation/immunology , Plasma Membrane Calcium-Transporting ATPases/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Cell Separation , Flow Cytometry , Humans , Immunoblotting , Interleukin-2/immunology , Jurkat Cells , Mass Spectrometry , Real-Time Polymerase Chain Reaction , Signal Transduction/immunology , Transduction, Genetic
16.
Nanomedicine ; 14(1): 123-130, 2018 01.
Article in English | MEDLINE | ID: mdl-28939491

ABSTRACT

Liposomes functionalized with monoclonal antibodies or their antigen-binding fragments have attracted much attention as specific drug delivery devices for treatment of various diseases including cancer. The conjugation of antibodies to liposomes is usually achieved by covalent coupling using cross-linkers in a reaction that might adversely affect the characteristics of the final product. Here we present an alternative strategy for liposome functionalization: we created a recombinant Fab antibody fragment genetically fused on its C-terminus to the hydrophobic peptide derived from pulmonary surfactant protein D, which became inserted into the liposomal bilayer during liposomal preparation and anchored the Fab onto the liposome surface. The Fab-conjugated liposomes specifically recognized antigen-positive cells and efficiently delivered their cargo, the Alexa Fluor 647 dye, into target cells in vitro and in vivo. In conclusion, our approach offers the potential for straightforward development of nanomedicines functionalized with an antibody of choice without the need of harmful cross-linkers.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoglobulin Fab Fragments/immunology , Liposomes/chemistry , Lymphoma/immunology , Peptide Fragments/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , CD48 Antigen/metabolism , CD59 Antigens/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Jurkat Cells , Lymphoma/metabolism , Lymphoma/pathology , Mice , Peptide Fragments/metabolism , Pulmonary Surfactant-Associated Protein D/immunology , Pulmonary Surfactant-Associated Protein D/metabolism , Tumor Cells, Cultured
17.
Appl Environ Microbiol ; 83(13)2017 07 01.
Article in English | MEDLINE | ID: mdl-28455331

ABSTRACT

Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia, Rickettsiae, Anaplasma/Ehrlichia (including "Candidatus Neoehrlichia"), Babesia, and Coxiella The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferisensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferisensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis, Borrelia lusitaniae, and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. "Candidatus Neoehrlichia mikurensis," Babesia spp. (B. venatorum, B. divergens, B. microti), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and "Candidatus Neoehrlichia mikurensis" showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferisensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging.IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies.


Subject(s)
Anaplasma/isolation & purification , Blotting, Southern/methods , Borrelia/isolation & purification , Ixodes/microbiology , Polymerase Chain Reaction/methods , Rickettsia/isolation & purification , Anaplasma/classification , Anaplasma/genetics , Animals , Austria , Borrelia/classification , Borrelia/genetics , DNA, Bacterial/genetics , Rickettsia/classification , Rickettsia/genetics
18.
FASEB J ; 30(4): 1492-503, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26678451

ABSTRACT

Complement regulation leads to the generation of complement split products (CSPs) such as complement component (C)4d, a marker for disease activity in autoimmune syndromes or antibody-mediated allograft rejection. However, the physiologic role of C4d has been unknown. By screening murine thymoma BW5147 cells expressing a cDNA library generated from human monocyte-derived dendritic cells with recombinant human C4d, we identified Ig-like transcript (ILT)4 and ILT5v2 as cellular receptors for C4d. Both receptors, expressed on monocytes, macrophages, and dendritic cells, also interacted with the CSPs C3d, C4b, C3b, and iC3b. However, C4d did not bind to classic complement receptors (CRs). Interaction between cell surface-resident ILT4 and soluble monomeric C4d resulted in endocytosis of C4d. Surprisingly, binding of soluble ILT4 to C4d covalently immobilized to a cellular surface following classic complement activation could not be detected. Remarkably, C4d immobilized to a solid phaseviaits intrinsic thioester conferred a dose-dependent inhibition of TNF-α and IL-6 secretion in monocytes activatedviaFc-cross-linking of up to 50% as compared to baseline. Similarly, C4d conferred an attenuation of intracellular Ca(2+)flux in monocytes activatedviaFc-cross-linking. In conclusion, ILT4 represents a scavenger-type endocytotic CR for soluble monomeric C4d, whereas attenuation of monocyte activation by physiologically oriented C4d on a surface appears to be dependent on a yet to be identified C4d receptor.-Hofer, J., Forster, F., Isenman, D. E., Wahrmann, M., Leitner, J., Hölzl, M. A., Kovarik, J. K., Stockinger, H., Böhmig, G. A., Steinberger, P., Zlabinger, G. J. Ig-like transcript 4 as a cellular receptor for soluble complement fragment C4d.


Subject(s)
Complement C4b/metabolism , Membrane Glycoproteins/metabolism , Peptide Fragments/metabolism , Receptors, Complement/metabolism , Receptors, Immunologic/metabolism , Animals , Calcium/metabolism , Cell Line, Tumor , Complement C3b/metabolism , Complement C3d/metabolism , Dendritic Cells/metabolism , Endocytosis , Flow Cytometry , Humans , Immunoblotting , Interleukin-6/metabolism , Macrophages/metabolism , Mice , Monocytes/metabolism , Protein Binding , Tumor Necrosis Factor-alpha/metabolism
20.
J Immunol ; 195(10): 4555-63, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26546687

ABSTRACT

CD (cluster of differentiation) Ags are cell surface molecules expressed on leukocytes and other cells relevant for the immune system. CD nomenclature has been universally adopted by the scientific community and is officially approved by the International Union of Immunological Societies and sanctioned by the World Health Organization. It provides a unified designation system for mAbs, as well as for the cell surface molecules that they recognize. This nomenclature was established by the Human Leukocyte Differentiation Antigens Workshops. In addition to defining the CD nomenclature, these workshops have been instrumental in identifying and determining the expression and function of cell surface molecules. Over the past 30 y, the data generated by the 10 Human Leukocyte Differentiation Antigens Workshops have led to the characterization and formal designation of more than 400 molecules. CD molecules are commonly used as cell markers, allowing the identification and isolation of leukocyte populations, subsets, and differentiation stages. mAbs against these molecules have proven to be essential for biomedical research and diagnosis, as well as in biotechnology. More recently, they have been recognized as invaluable tools for the treatment of several malignancies and autoimmune diseases. In this article, we describe how the CD nomenclature was established, present the official updated list of CD molecules, and provide a rationale for their usefulness in the 21st century.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, CD/classification , Terminology as Topic , Antigens, CD/immunology , Biomarkers , Humans
SELECTION OF CITATIONS
SEARCH DETAIL