Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochemistry (Mosc) ; 81(10): 1205-1212, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27908245

ABSTRACT

The crystal structure of the γ-subunit of translation initiation factor 2 from the archaeon Sulfolobus solfataricus (SsoIF2γ) has been solved based on perfectly hemihedral twinned data. The protein was cocrystallized with the 10-fold molar excess of GTP analog (GDPCP) over protein. However, no nucleotide was found in the structure, and the model demonstrated the apo form of the protein. Two slightly different molecules in the asymmetric unit of the crystal are related by the non-crystallographic 2-fold axis and form a tightly associated dimer. This dimer is stabilized by an intermolecular hydrophobic core and hydrogen bonds. Lack of GDPCP in the nucleotide-binding pocket of the γ-subunit and significant excess of dimers over monomers in the crystallization solution suggest that these dimers are the building blocks of the crystal. Contrary to SsoIF2γ monomers, these dimers are able to crystallize in two oppositely oriented slightly different crystal domains, thus forming a twinned crystal. Comparison of crystallization conditions for the twinned and untwinned crystals of apo SsoIF2γ showed that stabilization of the dimers in the solution may be caused by higher sodium salt concentration. Since amino acid residues involved in intermolecular contacts in the dimer are responsible for binding of the γ- and α-subunits within SsoIF2, increase in sodium salt concentration may prevent functioning of SsoIF2 in the cell.


Subject(s)
Peptide Initiation Factors/chemistry , Protein Subunits/chemistry , Sulfolobus solfataricus/chemistry , Crystallography, X-Ray
2.
Biochemistry (Mosc) ; 76(3): 283-94, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21568863

ABSTRACT

Translation initiation factor 2 (IF2) is one of key components of the translation initiation system in living cells. In bacteria IF2 is a multidomain monomeric protein, while in eukaryotic and archaean cells e/aIF2 is heterotrimer (αßγ). Data, including our own, on eukaryotic type translation initiation factor 2 (e/aIF2) structure and functioning are presented. There are also new data on initiation factors eIF5 and eIF2B that directly interact with eIF2 and control its participation in nucleotide exchange.


Subject(s)
Eukaryotic Initiation Factor-2/chemistry , Eukaryotic Initiation Factor-2/metabolism , Animals , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Transfer, Met/metabolism , Ribosome Subunits, Small/metabolism , Structure-Activity Relationship
3.
Biochemistry (Mosc) ; 74(1): 54-60, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19232049

ABSTRACT

The structure of the intact heterotrimeric translation initiation factor 2 (e/aIF2) is of great interest due to its key role in the initiator tRNA delivery to the ribosome and in translation initiation regulation in eukaryotes and archaea. We have chosen aIF2 from the hyperthermophilic archaeobacterium Sulfolobus solfataricus (SsoIF2) as an object for crystallization and structural investigations. Genes of the SsoIF2 subunits alpha, beta, and gamma were cloned and superexpressed. A method for heterotrimer SsoIF2alphabetagamma purification was elaborated with at least 95% purity. Highly ordered crystals of the full-sized SsoIF2, reflecting X-rays at the resolution up to 2.8 A, were obtained for the first time.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/isolation & purification , Prokaryotic Initiation Factor-2/chemistry , Prokaryotic Initiation Factor-2/isolation & purification , Sulfolobus solfataricus/chemistry , Archaeal Proteins/genetics , Crystallization , Prokaryotic Initiation Factor-2/genetics , Protein Subunits/chemistry , Protein Subunits/isolation & purification , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL