Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Blood ; 141(22): 2713-2726, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36952639

ABSTRACT

Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but, to the best of our knowledge, has never been described to date. We studied 8 male patients, from 7 unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B-lymphoblastoid cell lines from patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. Knock down of DOCK11 recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T-cell (Treg) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found reduced T-cell proliferation and impaired STAT5B phosphorylation upon interleukin-2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and is associated with abnormal actin cytoskeleton remodeling as well as Treg phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.


Subject(s)
Immune System Diseases , Immunologic Deficiency Syndromes , Humans , Male , Actin Cytoskeleton/metabolism , Autoimmunity , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Immune System Diseases/metabolism , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , T-Lymphocytes, Regulatory
2.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Article in English | MEDLINE | ID: mdl-37793571

ABSTRACT

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Fas-Associated Death Domain Protein , Humans , Apoptosis/genetics , Autoimmune Diseases/genetics , Autoimmune Lymphoproliferative Syndrome/genetics , Comparative Genomic Hybridization , DNA , fas Receptor/genetics , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Germ Cells/pathology , Mutation
3.
J Autoimmun ; 142: 103152, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38071801

ABSTRACT

Anti-nuclear antibodies are the hallmark of autoimmune diseases such as systemic lupus erythematosus (SLE) and scleroderma. However, the molecular mechanisms of B cell tolerance breakdown in these pathological contexts are poorly known. The study of rare familial forms of autoimmune diseases could therefore help to better describe common biological mechanisms leading to B cell tolerance breakdown. By Whole-Exome Sequencing, we identified a new heterozygous mutation (p.R594C) in ERN1 gene, encoding IRE1α (Inositol-Requiring Enzyme 1α), in a multiplex family with several members presenting autoantibody-mediated autoimmunity. Using human cell lines and a knock-in (KI) transgenic mouse model, we showed that this mutation led to a profound defect of IRE1α ribonuclease activity on X-Box Binding Protein 1 (XBP1) splicing. The KI mice developed a broad panel of autoantibodies, however in a subclinical manner. These results suggest that a decrease of spliced form of XBP1 (XBP1s) production could contribute to B cell tolerance breakdown and give new insights into the function of IRE1α which are important to consider for the development of IRE1α targeting strategies.


Subject(s)
Autoimmune Diseases , Protein Serine-Threonine Kinases , Humans , Mice , Animals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Signal Transduction , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Mice, Transgenic
4.
J Allergy Clin Immunol ; 151(6): 1634-1645, 2023 06.
Article in English | MEDLINE | ID: mdl-36638922

ABSTRACT

BACKGROUND: Allogenic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are potentially curative treatments for severe combined immunodeficiency (SCID). Late-onset posttreatment manifestations (such as persistent hepatitis) are not uncommon. OBJECTIVE: We sought to characterize the prevalence and pathophysiology of persistent hepatitis in transplanted SCID patients (SCIDH+) and to evaluate risk factors and treatments. METHODS: We used various techniques (including pathology assessments, metagenomics, single-cell transcriptomics, and cytometry by time of flight) to perform an in-depth study of different tissues from patients in the SCIDH+ group and corresponding asymptomatic similarly transplanted SCID patients without hepatitis (SCIDH-). RESULTS: Eleven patients developed persistent hepatitis (median of 6 years after HSCT or GT). This condition was associated with the chronic detection of enteric viruses (human Aichi virus, norovirus, and sapovirus) in liver and/or stools, which were not found in stools from the SCIDH- group (n = 12). Multiomics analysis identified an expansion of effector memory CD8+ T cells with high type I and II interferon signatures. Hepatitis was associated with absence of myeloablation during conditioning, split chimerism, and defective B-cell function, representing 25% of the 44 patients with SCID having these characteristics. Partially myeloablative retransplantation or GT of patients with this condition (which we have named as "enteric virus infection associated with hepatitis") led to the reconstitution of T- and B-cell immunity and remission of hepatitis in 5 patients, concomitantly with viral clearance. CONCLUSIONS: Enteric virus infection associated with hepatitis is related to chronic enteric viral infection and immune dysregulation and is an important risk for transplanted SCID patients with defective B-cell function.


Subject(s)
Enterovirus Infections , Hematopoietic Stem Cell Transplantation , Hepatitis , Severe Combined Immunodeficiency , Virus Diseases , Humans , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/etiology , CD8-Positive T-Lymphocytes , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Virus Diseases/etiology , Hepatitis/etiology
5.
Ann Rheum Dis ; 81(5): 720-728, 2022 05.
Article in English | MEDLINE | ID: mdl-35022159

ABSTRACT

OBJECTIVES: The emergence of strains of SARS-CoV-2 exhibiting increase viral fitness and immune escape potential, such as the Delta variant (B.1.617.2), raises concerns in immunocompromised patients. We aimed to evaluate seroconversion, cross-neutralisation and T-cell responses induced by BNT162b2 in immunocompromised patients with systemic inflammatory diseases. METHODS: Prospective monocentric study including patients with systemic inflammatory diseases and healthcare immunocompetent workers as controls. Primary endpoints were anti-spike antibodies levels and cross-neutralisation of Alpha and Delta variants after BNT162b2 vaccine. Secondary endpoints were T-cell responses, breakthrough infections and safety. RESULTS: Sixty-four cases and 21 controls not previously infected with SARS-CoV-2 were analysed. Kinetics of anti-spike IgG after BNT162b2 vaccine showed lower and delayed induction in cases, more pronounced with rituximab. Administration of two doses of BNT162b2 generated a neutralising response against Alpha and Delta in 100% of controls, while sera from only one of rituximab-treated patients neutralised Alpha (5%) and none Delta. Other therapeutic regimens induced a partial neutralising activity against Alpha, even lower against Delta. All controls and cases except those treated with methotrexate mounted a SARS-CoV-2 specific T-cell response. Methotrexate abrogated T-cell responses after one dose and dramatically impaired T-cell responses after two doses of BNT162b2. Third dose of vaccine improved immunogenicity in patients with low responses. CONCLUSION: Rituximab and methotrexate differentially impact the immunogenicity of BNT162b2, by impairing B-cell and T-cell responses, respectively. Delta fully escapes the humoral response of individuals treated with rituximab. These findings support efforts to improve BNT162b2 immunogenicity in immunocompromised individuals (ClinicalTrials.gov number, NCT04870411).


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunocompromised Host , Immunogenicity, Vaccine , Methotrexate , Prospective Studies , Rituximab , SARS-CoV-2
6.
Blood ; 134(1): 9-21, 2019 07 04.
Article in English | MEDLINE | ID: mdl-30940614

ABSTRACT

Evans syndrome (ES) is a rare severe autoimmune disorder characterized by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. In most cases, the underlying cause is unknown. We sought to identify genetic defects in pediatric ES (pES), based on a hypothesis of strong genetic determinism. In a national, prospective cohort of 203 patients with early-onset ES (median [range] age at last follow-up: 16.3 years ([1.2-41.0 years]) initiated in 2004, 80 nonselected consecutive individuals underwent genetic testing. The clinical data were analyzed as a function of the genetic findings. Fifty-two patients (65%) received a genetic diagnosis (the M+ group): 49 carried germline mutations and 3 carried somatic variants. Thirty-two (40%) had pathogenic mutations in 1 of 9 genes known to be involved in primary immunodeficiencies (TNFRSF6, CTLA4, STAT3, PIK3CD, CBL, ADAR1, LRBA, RAG1, and KRAS), whereas 20 patients (25%) carried probable pathogenic variants in 16 genes that had not previously been reported in the context of autoimmune disease. Lastly, no genetic abnormalities were found in the remaining 28 patients (35%, the M- group). The M+ group displayed more severe disease than the M- group, with a greater frequency of additional immunopathologic manifestations and a greater median number of lines of treatment. Six patients (all from the M+ group) died during the study. In conclusion, pES was potentially genetically determined in at least 65% of cases. Systematic, wide-ranging genetic screening should be offered in pES; the genetic findings have prognostic significance and may guide the choice of a targeted treatment.


Subject(s)
Anemia, Hemolytic, Autoimmune/genetics , Anemia, Hemolytic, Autoimmune/immunology , Thrombocytopenia/genetics , Thrombocytopenia/immunology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Mutation , Young Adult
7.
Clin Immunol ; 188: 52-57, 2018 03.
Article in English | MEDLINE | ID: mdl-29330115

ABSTRACT

Evans syndrome (ES) is defined by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. Clinical presentation includes manifestations of immune dysregulation, found in primary immune deficiencies, autoimmune lymphoproliferative syndrome with FAS (ALPS-FAS), Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) and Lipopolysaccharide-Responsive vesicle trafficking Beige-like and Anchor protein (LRBA) defects. We report the clinical history and genetic results of 18 children with ES after excluding ALPS-FAS. Thirteen had organomegaly, five lymphocytic infiltration of non-lymphoid organs, nine hypogammaglobulinemia and fifteen anomalies in lymphocyte phenotyping. Seven patients had genetic defects: three CTLA4 mutations (c.151C>T; c.109+1092_568-512del; c.110-2A>G) identified by Sanger sequencing and four revealed by Next Generation Sequencing: LRBA (c.2450+1C>T), STAT3 gain-of-function (c.2147C>T; c.2144C>T) and KRAS (c.37G>T). No feature emerged to distinguish patients with or without genetic diagnosis. Our data on pediatric-onset ES should prompt physicians to perform extensive screening for mutations in the growing pool of genes involved in primary immune deficiencies with autoimmunity.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Anemia, Hemolytic, Autoimmune/genetics , CTLA-4 Antigen/genetics , Mutation , Thrombocytopenia/genetics , Anemia, Hemolytic, Autoimmune/diagnosis , Anemia, Hemolytic, Autoimmune/pathology , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/pathology , Thrombocytopenia/diagnosis
9.
J Pediatr Gastroenterol Nutr ; 64(3): 378-384, 2017 03.
Article in English | MEDLINE | ID: mdl-27253662

ABSTRACT

OBJECTIVE: Early-onset inflammatory bowel diseases can result from a wide spectrum of rare mendelian disorders. Early molecular diagnosis is crucial in defining treatment and in improving life expectancy. Herein we aimed at defining the mechanism of an immunodeficiency-polyendrocrinopathy and enteropathy-X-linked (IPEX)-like disease combined with a severe immunodeficiency in 2 siblings born from distantly related parents. METHODS: Whole exome sequencing was performed on blood-extracted genomic DNA from the 2 affected children and their parents on the genomic platform of Institut IMAGINE. Candidate gene mutation was identified using the in-house software PolyWeb and confirmed by Sanger sequencing. Protein expression was determined by western blot. Flow cytometry was used to assess consequences of the mutation on lymphocyte phenotype and nuclear factor-kappa B (NF-κB) activation at diagnosis and after treatment by hematopoietic stem cell transplantation. RESULTS: We identified a homozygous missense mutation in mucosa-associated lymphoid tissue lymphoma translocation 1 gene (MALT1), which precluded protein expression. In keeping with the known function of MALT1, NF-κB-dependent lymphocyte activation was severely impaired. Moreover, there was a drastic reduction in Forkhead box P3 (FOXP3) regulatory T cells accounting for the IPEX-like phenotype. Following identification of the mutation, both children received hematopoietic stem cell transplantation, which permitted full clinical recovery. Immunological workup at 6 and 12 months after transplantation showed normal NF-κB activation and correction of regulatory T cells frequency. CONCLUSIONS: Along with FOXP3, interleukin 2 receptor alpha chain (IL2RA), and cytotoxic T-lymphocyte protein 4 precursor (CTLA-4) mutations, MALT1 deficiency should now be considered as a possible cause of IPEX-like syndrome associated with immunodeficiency that can be cured by hematopoietic stem cell transplantation.


Subject(s)
Diabetes Mellitus, Type 1/congenital , Diarrhea/genetics , Genetic Diseases, X-Linked/genetics , Immune System Diseases/congenital , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/deficiency , Mutation, Missense , Child , Child, Preschool , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/genetics , Diarrhea/diagnosis , Female , Genetic Diseases, X-Linked/diagnosis , Genetic Markers , Homozygote , Humans , Immune System Diseases/diagnosis , Immune System Diseases/genetics , Male , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Siblings
10.
Clin Immunol ; 168: 88-93, 2016 07.
Article in English | MEDLINE | ID: mdl-27057999

ABSTRACT

LRBA (lipopolysaccharide-responsive and beige-like anchor protein) deficiency associates immune deficiency, lymphoproliferation, and various organ-specific autoimmunity. To date, prevalent symptoms are autoimmune cytopenias and enteropathy, and lymphocytic interstitial lung disease. In 2 siblings from a consanguineous family presenting with early onset polyautoimmunity, we presumed autosomal recessive inheritance and performed whole exome sequencing. We herein report the first case of early-onset, severe, chronic polyarthritis associated with LRBA deficiency. A novel 1bp insertion in the LRBA gene, abolishing protein expression, was identified in this family. Among the 2 brothers homozygous for LRBA mutation, one developed Evans syndrome and deceased at age 8.5 from complications of severe autoimmune thrombocytopenia. His brother, who carried the same homozygous LRBA mutation, early-onset erosive polyarthritis associated with chronic, bilateral, anterior uveitis and early onset type 1 diabetes mellitus. This report widens the clinical spectrum of LRBA deficiency and, in lights of the variable phenotypes described so far, prompts us to screen for this disease in patients with multiple autoimmune symptoms in the family, including severe, erosive, polyarticular juvenile arthritis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Arthritis/genetics , Autoimmunity/genetics , Mutation , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Arthritis/complications , Arthritis/metabolism , Child, Preschool , Chronic Disease , Consanguinity , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Exome/genetics , Family Health , Fatal Outcome , Female , Humans , Immunoblotting , Male , Pedigree , Sequence Analysis, DNA , Siblings , Uveitis, Anterior/complications , Uveitis, Anterior/genetics , Uveitis, Anterior/metabolism
12.
Blood ; 124(10): 1597-609, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-24970930

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) caused by impaired FAS-mediated apoptosis of lymphocytes is characterized by lymphoproliferation, autoimmunity, but also an increased risk of invasive bacterial infection, notably following splenectomy. We surveyed a cohort of 100 ALPS patients (including 33 splenectomized) and found that 12 (10 splenectomized) had experienced 23 invasive bacterial infections mainly caused by Streptococcus pneumoniae. This vulnerability was associated with evidence of defective B-cell function characterized by low serum immunoglobulin (Ig) M, low IgM antibody production in response to S pneumoniae following nonconjugated immunization, and low blood memory B-cells counts (including marginal zone [MZ] B-cell counts). This immunodeficiency strongly correlated with intensity of lymphoproliferation. Spleen sections from 9 ALPS patients revealed double-negative T-cell (DN-T) infiltration of the MZ, which was depleted of B cells. MZ in ALPS patients contained an abnormally thick layer of MAdCAM-1((+)) stromal cells and an excess of DN-Ts. DN-Ts were shown to express MAdCAM-1 ligand, the α4ß7 integrin. These observations suggest that accumulating DN-Ts are trapped within stromal cell meshwork and interfere with correct localization of MZ B cells. Similar observations were made in spleens of fas-deficient mice. Our data revealed an unexpected mechanism by which ALPS results in anti-polysaccharide IgM antibody production-specific defect. Splenectomy should be avoided.


Subject(s)
Antibody Formation , Autoimmune Lymphoproliferative Syndrome/immunology , Autoimmune Lymphoproliferative Syndrome/pathology , Lipopolysaccharides/immunology , Spleen/immunology , Spleen/pathology , Adolescent , Adult , Animals , Autoimmune Lymphoproliferative Syndrome/epidemiology , Autoimmune Lymphoproliferative Syndrome/surgery , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Mice , Mice, Transgenic , Spleen/surgery , Splenectomy/adverse effects , Splenectomy/statistics & numerical data , Streptococcal Infections/epidemiology , Streptococcal Infections/immunology , Streptococcus pneumoniae/growth & development , Streptococcus pneumoniae/immunology , Young Adult
15.
J Allergy Clin Immunol ; 131(2): 486-90, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22857792

ABSTRACT

BACKGROUND: Autoimmune lymphoproliferative syndrome (ALPS) is characterized by chronic nonmalignant lymphoproliferation, accumulation of double-negative T cells, hypergammaglobulinemia G and A, and autoimmune cytopenia. OBJECTIVES: Although mostly associated with FAS mutations, different genetic defects leading to impaired apoptosis have been described in patients with ALPS, including the FAS ligand gene (FASLG) in rare cases. Here we report on the first case of complete FAS ligand deficiency caused by a homozygous null mutant. METHODS: Double-negative T-cell counts and plasma IL-10 and FAS ligand concentrations were determined as ALPS markers. The FASLG gene was sequenced, and its expression was analyzed by means of Western blotting. FAS ligand function was assessed based on reactivation-induced cell death. RESULTS: We describe a patient born to consanguineous parents who presented with a severe form of ALPS caused by FASLG deficiency. Although the clinical presentation was compatible with a homozygous FAS mutation, FAS-induced apoptosis was normal, and plasma FAS ligand levels were not detectable. This patient carries a homozygous, germline, single-base-pair deletion in FASLG exon 1, leading to a premature stop codon (F87fs x95) and a complete defect in FASLG expression. The healthy parents were each heterozygous for the mutation, confirming its recessive trait. CONCLUSION: FAS ligand deficiency should be screened in patients presenting with ALPS features but lacking the usual markers, including plasma soluble FAS ligand and an in vitro apoptotic defect. An activation-induced cell death test could help in discrimination.


Subject(s)
Autoimmune Lymphoproliferative Syndrome/genetics , Fas Ligand Protein/deficiency , Fas Ligand Protein/genetics , Mutation , Autoimmune Lymphoproliferative Syndrome/immunology , Fas Ligand Protein/immunology , Homozygote , Humans , Infant , Male
16.
Cell Death Dis ; 15(5): 315, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704374

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is a primary disorder of lymphocyte homeostasis, leading to chronic lymphoproliferation, autoimmune cytopenia, and increased risk of lymphoma. The genetic landscape of ALPS includes mutations in FAS, FASLG, and FADD, all associated with apoptosis deficiency, while the role of CASP10 defect in the disease remains debated. In this study, we aimed to assess the impact of CASP10 variants on ALPS pathogenesis. We benefit from thousands of genetic analysis datasets performed in our Institute's genetic platform to identify individuals carrying CASP10 variants previously suspected to be involved in ALPS outcome: p.C401LfsX15, p.V410I and p.Y446C, both at heterozygous and homozygous state. Clinical and laboratory features of the six included subjects were variable but not consistent with ALPS. Two individuals were healthy. Comprehensive analyses of CASP10 protein expression and FAS-mediated apoptosis were conducted and compared to healthy controls and ALPS patients with FAS mutations. Missense CASP10 variants (p.V410I and p.Y446C), which are common in the general population, did not disrupt CASP10 expression, nor FAS-mediated apoptosis. In contrast, homozygous p.C401LfsX15 CASP10 variant lead to a complete abolished CASP10 expression but had no impact on FAS-mediated apoptosis function. At heterozygous state, this p.C401LfsX15 variant lead to a reduced CASP10 protein levels but remained associated with a normal FAS-mediated apoptosis function. These findings demonstrate that CASPASE 10 is dispensable for FAS-mediated apoptosis. In consequences, CASP10 defect unlikely contribute to ALPS pathogenesis, since they did not result in an impairment of FAS-mediated apoptosis nor in clinical features of ALPS in human. Moreover, the absence of FAS expression up-regulation in subjects with CASP10 variants rule out any compensatory mechanisms possibly involved in the normal apoptosis function observed. In conclusion, this study challenges the notion that CASP10 variants contribute to the development of ALPS.


Subject(s)
Apoptosis , Autoimmune Lymphoproliferative Syndrome , Caspase 10 , Mutation , fas Receptor , Humans , Caspase 10/genetics , Caspase 10/metabolism , Autoimmune Lymphoproliferative Syndrome/genetics , Male , Female , Mutation/genetics , Apoptosis/genetics , fas Receptor/genetics , fas Receptor/metabolism , Adult , Child , Adolescent , Middle Aged
17.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798321

ABSTRACT

IKKα, encoded by CHUK , is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKß. Absence of IKKα cause fetal encasement syndrome in human, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and cause combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was partially impaired. Reintroducing wild-type CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of bi-allelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding and suggesting IKKα's role in canonical NF-κB target gene expression in human.

18.
Blood ; 118(18): 4798-807, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21885602

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is a genetic disorder characterized by early-onset, chronic, nonmalignant lymphoproliferation, autoimmune manifestations, and susceptibility to lymphoma. The majority of ALPS patients carry heterozygous germline (ALPS-FAS) or somatic mutations (ALPS-sFAS) of the TNFRSF6 gene coding for FAS. Although the clinical features of ALPS have been described previously, long-term follow-up data on morbidity and mortality are scarce. We performed a retrospective analysis of clinical and genetic features of 90 ALPS-FAS and ALPS-sFAS patients monitored over a median period of 20.5 years. Heterozygous germline mutations of TNFRSF6 were identified in 83% of probands. Somatic TNFRSF6 mutations were found in 17% of index cases (all located within the intracellular domain of FAS). Sixty percent of the ALPS-FAS patients with mutations in the extracellular domain had a somatic mutation affecting the second allele of TNFRSF6; age at onset was later in these patients. No other genotype-phenotype correlations could be found. Long-term analysis confirmed a trend toward spontaneous remission of lymphoproliferation in adulthood but mixed outcomes for autoimmune manifestations. We observed significant and potentially life-threatening disease and treatment-related morbidity, including a high risk of sepsis after splenectomy that calls for careful long-term monitoring of ALPS patients. We also noted a significantly greater occurrence of disease-related symptoms in male than in female patients.


Subject(s)
Autoimmune Lymphoproliferative Syndrome/genetics , Mutation , fas Receptor/genetics , Adolescent , Adult , Aged , Autoimmune Lymphoproliferative Syndrome/blood , Autoimmune Lymphoproliferative Syndrome/complications , Autoimmune Lymphoproliferative Syndrome/epidemiology , Child , Child, Preschool , Cohort Studies , Data Collection , Female , Humans , Infant , Male , Middle Aged , Mutation/physiology , Young Adult
19.
Nat Commun ; 14(1): 3728, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349339

ABSTRACT

Loss of NBEAL2 function leads to grey platelet syndrome (GPS), a bleeding disorder characterized by macro-thrombocytopenia and α-granule-deficient platelets. A proportion of patients with GPS develop autoimmunity through an unknown mechanism, which might be related to the proteins NBEAL2 interacts with, specifically in immune cells. Here we show a comprehensive interactome of NBEAL2 in primary T cells, based on mass spectrometry identification of altogether 74 protein association partners. These include LRBA, a member of the same BEACH domain family as NBEAL2, recessive mutations of which cause autoimmunity and lymphocytic infiltration through defective CTLA-4 trafficking. Investigating the potential association between NBEAL2 and CTLA-4 signalling suggested by the mass spectrometry results, we confirm by co-immunoprecipitation that CTLA-4 and NBEAL2 interact with each other. Interestingly, NBEAL2 deficiency leads to low CTLA-4 expression in patient-derived effector T cells, while their regulatory T cells appear unaffected. Knocking-down NBEAL2 in healthy primary T cells recapitulates the low CTLA-4 expression observed in the T cells of GPS patients. Our results thus show that NBEAL2 is involved in the regulation of CTLA-4 expression in conventional T cells and provide a rationale for considering CTLA-4-immunoglobulin therapy in patients with GPS and autoimmune disease.


Subject(s)
Gray Platelet Syndrome , Humans , Adaptor Proteins, Signal Transducing/metabolism , Blood Platelets/metabolism , Blood Proteins/genetics , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Gray Platelet Syndrome/genetics , Gray Platelet Syndrome/metabolism
20.
Gastroenterology ; 139(3): 770-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20537998

ABSTRACT

BACKGROUND & AIMS: Little is known about the pathophysiology of early onset forms of autoimmune enteropathy (AIE). AIE has been associated with mutations in FOXP3-a transcription factor that controls regulatory T-cell development and function. We analyzed the molecular basis of neonatal or early postnatal AIE using clinical, genetic, and functional immunological studies. METHODS: Gastroenterological and immunological features were analyzed in 9 boys and 2 girls with AIE that began within the first 5 months of life. FOXP3 and IL2RA were genotyped in peripheral blood monocytes. FOXP3 messenger RNA and protein expression were analyzed using reverse-transcription polymerase chain reaction, flow cytometry, and confocal immunofluorescence of CD4(+) T cells. Regulatory T-cell function (CD4(+)CD25(+)) was assayed in coculture systems. RESULTS: AIE associated with extraintestinal autoimmunity was severe and life-threatening; all patients required total parenteral nutrition. Regulatory T cells from 7 patients had altered function and FOXP3 mutations that resulted in lost or reduced FOXP3 protein expression; 2 infants had reduced regulatory T-cell activity and reduced levels of FOXP3 protein, although we did not detect mutations in FOXP3 coding region, poly-A site, or promoter region (called FOXP3-dependent AIE). Two patients had a normal number of regulatory T cells that expressed normal levels of FOXP3 protein and normal regulatory activity in in vitro coculture assays (called FOXP3-independent AIE). No mutations in IL2RA were found. CONCLUSIONS: Most cases of AIE are associated with alterations in regulatory T-cell function; some, but not all, cases have mutations that affect FOXP3 expression levels. Further studies are needed to identify mechanisms of AIE pathogenesis.


Subject(s)
Autoimmune Diseases/immunology , Forkhead Transcription Factors/blood , Intestinal Diseases/immunology , T-Lymphocytes, Regulatory/immunology , Age of Onset , Autoimmune Diseases/genetics , Autoimmune Diseases/mortality , Autoimmune Diseases/therapy , CD4 Lymphocyte Count , Case-Control Studies , Cells, Cultured , Child , Child, Preschool , Coculture Techniques , Down-Regulation , Female , Flow Cytometry , Forkhead Transcription Factors/genetics , Humans , Immunosuppressive Agents/therapeutic use , Infant , Infant, Newborn , Interleukin-2 Receptor alpha Subunit/blood , Interleukin-2 Receptor alpha Subunit/genetics , Intestinal Diseases/genetics , Intestinal Diseases/mortality , Intestinal Diseases/therapy , Male , Microscopy, Confocal , Mutation , Open Reading Frames , Parenteral Nutrition, Total , Promoter Regions, Genetic , RNA, Messenger/blood , Reverse Transcriptase Polymerase Chain Reaction , Severity of Illness Index , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL