Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32084332

ABSTRACT

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Subject(s)
Ion Channels/physiology , Mechanotransduction, Cellular/genetics , Nociceptors/metabolism , Pain/genetics , Touch/genetics , Animals , Gene Expression Regulation/genetics , Humans , Ion Channels/genetics , Lipids/genetics , Mice , Mice, Knockout , Pain/physiopathology , Patch-Clamp Techniques , Stress, Mechanical , Touch/physiology
2.
PLoS Genet ; 19(10): e1010977, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37844115

ABSTRACT

Chronic pain is at epidemic proportions in the United States, represents a significant burden on our public health system, and is coincident with a growing opioid crisis. While numerous genome-wide association studies have been reported for specific pain-related traits, many of these studies were underpowered, and the genetic relationship among these traits remains poorly understood. Here, we conducted a joint analysis of genome-wide association study summary statistics from seventeen pain susceptibility traits in the UK Biobank. This analysis revealed 99 genome-wide significant risk loci, 65 of which overlap loci identified in earlier studies. The remaining 34 loci are novel. We applied leave-one-trait-out meta-analyses to evaluate the influence of each trait on the joint analysis, which suggested that loci fall into four categories: loci associated with nearly all pain-related traits; loci primarily associated with a single trait; loci associated with multiple forms of skeletomuscular pain; and loci associated with headache-related pain. Overall, 664 genes were mapped to the 99 loci by genomic proximity, eQTLs, and chromatin interaction and ~15% of these genes showed differential expression in individuals with acute or chronic pain compared to healthy controls. Risk loci were enriched for genes involved in neurological and inflammatory pathways. Genetic correlation and two-sample Mendelian randomization indicated that psychiatric, metabolic, and immunological traits mediate some of these effects.


Subject(s)
Chronic Pain , Genome-Wide Association Study , Humans , Chronic Pain/genetics , Genetic Predisposition to Disease , Genome , Genomics , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674887

ABSTRACT

The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Inflammation/metabolism , Intervertebral Disc Displacement/metabolism , Macrophages/metabolism
4.
Eur Spine J ; 31(10): 2801-2811, 2022 10.
Article in English | MEDLINE | ID: mdl-35816198

ABSTRACT

PURPOSE: Intervertebral disc (IVD) degeneration is accompanied by mechanical and gene expression changes to IVDs. SPARC-null mice display accelerated IVD degeneration, and treatment with (toll-like receptor 4 (TLR4) inhibitor) TAK-242 decreases proinflammatory cytokines and pain. This study examined if chronic TAK-242 treatment impacts mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice. METHODS: Male and female SPARC-null and WT mice aged 7-9 months were given intraperitoneal injections with TAK-242 or an equivalent saline vehicle for 8 weeks (3x/per week, M-W-F). L2-L5 spinal segments were tested in cyclic axial tension and compression. Gene expression analysis (RT-qPCR) was performed on male IVD tissues using Qiagen RT2 PCR arrays. RESULTS: SPARC-null mice had decreased NZ length (p = 0.001) and increased NZ stiffness (p < 0.001) compared to WT mice. NZ length was not impacted by TAK-242 treatment (p = 0.967) despite increased hysteresis energy (p = 0.024). Tensile stiffness was greater in SPARC-null mice (p = 0.018), and compressive (p < 0.001) stiffness was reduced from TAK-242 treatment in WT but not SPARC-null mice (p = 0.391). Gene expression analysis found upregulation of 13 ECM and 5 inflammatory genes in SPARC-null mice, and downregulation of 2 inflammatory genes after TAK-242 treatment. CONCLUSIONS: TAK-242 had limited impacts on SPARC-null mechanical properties and did not attenuate NZ mechanical changes associated with IVD degeneration. Expression analysis revealed an increase in ECM and inflammatory gene expression in SPARCnull mice with a reduction in inflammatory expression due to TAK-242 treatment. This study provides insight into the role of TLR4 in SPARC-null mediated IVD degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Cytokines/metabolism , Female , Gene Expression , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Male , Mice , Mice, Knockout , Sulfonamides , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
5.
J Biomech Eng ; 143(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-32734296

ABSTRACT

Intervertebral disc (IVD) degeneration is associated with low back pain (LBP) and accompanied by mechanical changes to the spine. Secreted protein acidic and rich in cysteine (SPARC) is a protein that contributes to the functioning and maintenance of the extracellular matrix. SPARC-null mice display accelerated IVD degeneration and pain-associated behaviors. This study examined if SPARC-null mice also display altered spine mechanics as compared to wild-type (WT) mice. Lumbar spines from SPARC-null (n = 36) and WT (n = 18) mice aged 14-25 months were subjected to cyclic axial tension and compression to determine neutral zone (NZ) length and stiffness. Three separate mechanical tests were completed for each spine to determine the effect of the number of IVDs tested in series (one versus two versus three IVDs). SPARC-null spine NZs were both stiffer (p < 0.001) and smaller in length (p < 0.001) than WT spines. There was an effect of the number of IVDs tested in series for NZ length but not NZ stiffness when collapsed across condition (SPARC-null and WT). Correlation analysis revealed a weak negative correlation (r = -0.24) between age and NZ length in SPARC-null mice and a weak positive correlation (r = 0.30) between age and NZ stiffness in WT mice. In conclusion, SPARC-null mice had stiffer and smaller NZs than WT mice, regardless of the number of IVDs in series being tested. The increased stiffness of these IVDs likely influences mobility at these spinal joints thereby potentially contributing to low back pain.


Subject(s)
Intervertebral Disc Degeneration , Animals , Lumbar Vertebrae , Mice , Osteonectin
6.
Eur Spine J ; 30(8): 2238-2246, 2021 08.
Article in English | MEDLINE | ID: mdl-34216236

ABSTRACT

STUDY DESIGN: A multi-cohort, case-control rodent study. PURPOSE: Investigate the long-term behavioural, histologic and radiologic consequences on the complete lumbar spine of L4/5 intervertebral disc (IVD) injury in mice and determine if increased physical activity mitigates the observed changes. METHODS: Cohorts of 2-month-old CD1 female mice underwent a single ventral puncture of the L4/5 IVD. 0.5-, 3- or 12-months after injury, general health (body weight and locomotor capacity), behavioural signs of axial discomfort (tail suspension, grip strength and FlexMaze assays) and radiating pain (von Frey and acetone tests) were assessed. Experimental groups with free access to an activity wheel in their home cages were including in the 12-month cohort. Lumbar disc status was determined using colorimetric staining and radiologic (X-ray and T2-MRI) analysis. Innervation was measured by immunoreactivity for PGP9.5 and calcitonin gene-related peptide. RESULTS: No changes in general health or persistent signs of axial discomfort were observed up to one year post-injury. In contrast, signs of radiating pain developed in injured mice at 3 months post-injury, persisted up to 12 months and were reversed by long-term physical activity. At 12-months post-injury, degeneration was observed in non-injured lumbar discs. Secondary degenerating IVDs were similar to the injured discs by X-ray (narrowing) and T2-MRI (internal disc disruption) but did not show abnormal innervation. Increased physical activity had no impact on mechanically injured IVDs, but attenuated disc narrowing at other lumbar levels. CONCLUSIONS: Mechanical injury of L4/5-IVDs induces delayed radiating pain and degeneration of adjacent discs; increased physical activity positively mitigated both.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Calcitonin Gene-Related Peptide , Disease Models, Animal , Female , Intervertebral Disc Degeneration/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Mice , Pain
7.
Osteoarthritis Cartilage ; 26(9): 1236-1246, 2018 09.
Article in English | MEDLINE | ID: mdl-29908959

ABSTRACT

OBJECTIVE: Intervertebral disc degeneration is a leading cause of chronic low back pain (LBP) but current treatment is limited. Toll-like receptors (TLRs) on disc cells are activated by endogenous extracellular matrix (ECM) fragments and modulate degeneration in vitro. This study investigated whether inhibiting TLR4 slows disc degeneration and reduces behavioral signs of LBP in vivo. DESIGN: 7-9-month old wild-type and secreted protein acidic and rich in cysteine (SPARC)-null (a model of disc degeneration and LBP) male mice were treated with TAK-242 (TLR4 inhibitor) once, and following a 10-day washout, mice were treated 3 times/week for 8 weeks. Behavioral signs of axial discomfort and radiating leg pain were assessed weekly with the grip force assay and acetone test, respectively. Following treatment, pain-related spinal cord changes were evaluated and lumbar discs were excised and cultured. Cytokine secretion from discs was evaluated with protein arrays. RESULTS: SPARC-null mice displayed elevated signs of axial and radiating pain at baseline compared to wild-type. Chronic, but not acute, TLR4 inhibition reduced behavioral signs of pain compared to vehicle. SPARC-null mice have increased calcitonin gene-related peptide (CGRP)- and glial fibrillary acidic protein (GFAP)-immunoreactivity (astrocyte marker) in the dorsal horn compared to wild-type, which is reduced by chronic TLR4 inhibition. Ex vivo degenerating discs from SPARC-null mice secrete increased levels of many pro-inflammatory cytokines, which chronic TLR4 inhibition reduced. CONCLUSION: Chronic TLR4 inhibition decreased behavioral signs of LBP, pain-related neuroplasticity and disc inflammation in SPARC-null mice. TAK-242 inhibits TLR4 activation within discs, as evidenced by decreases in cytokine release. Therefore, TLRs are potential therapeutic targets to slow disc degeneration and reduce pain.


Subject(s)
Intervertebral Disc Degeneration/drug therapy , Osteonectin/metabolism , Sulfonamides/pharmacology , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Animals , Disease Models, Animal , Drug Delivery Systems , Injections, Intraperitoneal , Intervertebral Disc Degeneration/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pain Measurement , Random Allocation , Reference Values , Treatment Outcome
8.
J Clin Periodontol ; 45(12): 1485-1497, 2018 12.
Article in English | MEDLINE | ID: mdl-30289996

ABSTRACT

AIM: Selective serotonin reuptake inhibitors (SSRIs) are one of the most common antidepressant drugs. SSRI use is associated with increased risk of bone fracture and titanium implant failure. The aim of this in vivo study was to investigate the effect of SSRIs on osseointegration and bone healing. MATERIALS AND METHODS: On a total of 24 Sprague-Dawley rats, a custom-made titanium implant was placed in the left tibia, while a unicortical defect was created in the right tibia. Rats were assigned randomly into two groups and received a daily dose of either sertraline (5 mg/kg) or saline. After two weeks, they were euthanized and bone healing and osseointegration were assessed by micro-CT and histology. RESULTS: Bone formation in bone defects was significantly lower (p < 0.05) in sertraline-treated rats (BV/TV = 20.67 ± 11.98%) compared to the controls (BV/TV = 37.87 ± 9.56%). Furthermore, the percentage of osseointegration was significantly lower (p < 0.05) in sertraline-treated rats (34.40 ± 7.17%) compared to the controls (54.37 ± 8.58%). CONCLUSION: Sertraline hinders bone healing and implant osseointegration.


Subject(s)
Osseointegration , Tibia , Animals , Antidepressive Agents , Rats , Rats, Sprague-Dawley , Sertraline , Titanium
9.
J Biol Chem ; 291(7): 3541-51, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26668319

ABSTRACT

Nerve growth factor (NGF) contributes to the development of chronic pain associated with degenerative connective tissue pathologies, such as intervertebral disc degeneration and osteoarthritis. However, surprisingly little is known about the regulation of NGF in these conditions. Toll-like receptors (TLR) are pattern recognition receptors classically associated with innate immunity but more recently were found to be activated by endogenous alarmins such as fragmented extracellular matrix proteins found in degenerating discs or cartilage. In this study we investigated if TLR activation regulates NGF and which signaling mechanisms control this response in intervertebral discs. TLR2 agonists, TLR4 agonists, or IL-1ß (control) treatment increased NGF, brain-derived neurotrophic factor (BDNF), and IL-1ß gene expression in human disc cells isolated from healthy, pain-free organ donors. However, only TLR2 activation or IL-1ß treatment increased NGF protein secretion. TLR2 activation increased p38, ERK1/2, and p65 activity and increased p65 translocation to the cell nucleus. JNK activity was not affected by TLR2 activation. Inhibition of NF-κB, and to a lesser extent p38, but not ERK1/2 activity, blocked TLR2-driven NGF up-regulation at both the transcript and protein levels. These results provide a novel mechanism of NGF regulation in the intervertebral disc and potentially other pathogenic connective tissues. TLR2 and NF-κB signaling are known to increase cytokines and proteases, which accelerate matrix degradation. Therefore, TLR2 or NF-κB inhibition may both attenuate chronic pain and slow the degenerative progress in vivo.


Subject(s)
Gene Expression Regulation , Intervertebral Disc/metabolism , MAP Kinase Signaling System , Nerve Growth Factor/metabolism , Protein Precursors/metabolism , Toll-Like Receptor 2/agonists , Active Transport, Cell Nucleus/drug effects , Adolescent , Adult , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antibodies, Neutralizing/metabolism , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Humans , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Intervertebral Disc/cytology , Intervertebral Disc/drug effects , Ligands , Lumbar Vertebrae , MAP Kinase Signaling System/drug effects , Male , Middle Aged , Nerve Growth Factor/genetics , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Precursors/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tissue Donors , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/metabolism , Young Adult
10.
Hum Brain Mapp ; 36(6): 2075-92, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25648842

ABSTRACT

We previously reported that effective treatment of chronic low back pain (CLBP) reversed abnormal brain structure and functional MRI (fMRI) activity during cognitive task performance, particularly in the left dorsolateral prefrontal cortex (DLPFC). Here, we used resting-state fMRI to examine how chronic pain affects connectivity of brain networks supporting cognitive functioning and the effect of treatment in 14 CLBP patients and 16 healthy, pain-free controls (scans were acquired at baseline for all subjects and at 6-months post-treatment for patients and a matched time-point for 10 controls). The main networks activated during cognitive task performance, task-positive network (TPN) and task-negative network (TNN) (aka default mode) network, were identified in subjects' task fMRI data and used to define matching networks in resting-state data. The connectivity of these cognitive resting-state networks was compared between groups, and before and after treatment. Our findings converged on the bilateral insula (INS) as the region of aberrant cognitive resting-state connectivity in patients pretreatment versus controls. These findings were complemented by an independent, data-driven approach showing altered global connectivity of the INS. Detailed investigation of the INS confirmed reduced connectivity to widespread TPN and TNN areas, which was partially restored post-treatment. Furthermore, analysis of diffusion-tensor imaging (DTI) data revealed structural changes in white matter supporting these findings. The left DLPFC also showed aberrant connectivity that was restored post-treatment. Altogether, our findings implicate the bilateral INS and left DLPFC as key nodes of disrupted cognition-related intrinsic connectivity in CLBP, and the resulting imbalance between TPN and TNN function is partially restored with treatment.


Subject(s)
Cerebral Cortex/physiopathology , Chronic Pain/physiopathology , Chronic Pain/therapy , Low Back Pain/physiopathology , Low Back Pain/therapy , Brain Mapping , Cerebral Cortex/pathology , Chronic Pain/pathology , Diffusion Tensor Imaging , Humans , Image Processing, Computer-Assisted , Low Back Pain/pathology , Magnetic Resonance Imaging , Neural Pathways/pathology , Neural Pathways/physiopathology , Rest , Spine/surgery , Surveys and Questionnaires , Treatment Outcome , Zygapophyseal Joint
11.
Breast Cancer Res Treat ; 153(1): 9-20, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26208488

ABSTRACT

Patients with breast cancer metastasis to bone suffer from inadequate pain relief. Animal models provide increased understanding of cancer-induced bone and sensory alterations. The objective of this study was to investigate the measures of pain at distant non-tumor-bearing sites in animals with localized bone metastasis. Immunocompetent BALB/c mice are injected intra-tibially with murine mammary carcinoma cells (4T1) or saline, and the sensitivity to mechanical and thermal stimuli in the contralateral paw was examined. In addition to previously demonstrated development of osteolysis and hypersensitivity to mechanical and thermal stimuli in the cancer-injected tibia, these animals exhibited an increase in sensory hypersensitivity in the contralateral limb. No bone lesions were evident on radiographs of the contralateral limbs. Histomorphometry detected decreased bone volume per tissue volume and increased osteoclast number in the contralateral tibia and vertebral bones of cancer-bearing animals. Neuroplasticity was examined by immunofluorescence for calcitonin gene-related peptide (CGRP) in sensory neurons and glial fibrillary acidic protein (GFAP) in lumbar spinal cords. CGRP-immunoreactivity and GFAP-immunoreactivity were significantly elevated both ipsilateral and contralateral in tumor-bearing animals. The anti-inflammatory and osteolysis-targeting drug rapamycin reduced hypersensitivity to mechanical and cold stimuli, attenuated GFAP over-expression, and lowered osteoclast number. The osteoclast-targeting drug pamidronate reduced sensitivity to cold and protected against bone loss. Localized bone cancer drives hypersensitivity, bone remodeling, and sensory neuron plasticity at sites distant from the primary tumor area. Drugs targeting these mechanisms may be useful in the treatment of pain distant from the primary tumor site.


Subject(s)
Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Osteolysis/pathology , Animals , Behavior, Animal , Biomarkers , Bone Neoplasms/physiopathology , Cell Line, Tumor , Disease Models, Animal , Female , Gliosis/metabolism , Gliosis/pathology , Mice , Osteoclasts/pathology , Osteolysis/diagnostic imaging , Pain , Radiography , Sensory Receptor Cells/metabolism
12.
J Neurosci ; 33(33): 13538-46, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23946412

ABSTRACT

We recently showed that spinal synergistic interactions between δ opioid receptors (δORs) and α2A adrenergic receptors (α2AARs) require protein kinase C (PKC). To identify which PKC isoforms contribute to analgesic synergy, we evaluated the effects of various PKC-isoform-specific peptide inhibitors on synergy between δORs and α2AARs using the tail flick assay of thermal nociception in mice. Only a PKCε inhibitor abolished synergy between a δOR agonist and an α2AAR agonist. We tested a panel of combinations of opioid and adrenergic agonists in PKCε knock-out mice and found that all four combinations of a δOR agonist and an α2AAR agonist required PKCε for antinociceptive synergy. None of the combinations of a µOR agonist with an α2AR agonist required PKCε. Immunohistochemistry confirmed that PKCε could be found in the population of peptidergic primary afferent nociceptors where δORs and α2AARs have been found to extensively colocalize. Immunoreactivity for PKCε was found in the majority of dorsal root ganglion neurons and intensely labeled laminae I and II of the spinal cord dorsal horn. PKCε is widespread in the spinal nociceptive system and in peptidergic primary afferents it appears to be specifically involved in mediating the synergistic interaction between δORs and α2AARs.


Subject(s)
Analgesics/administration & dosage , Anesthesia, Spinal , Protein Kinase C-epsilon/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Opioid, delta/metabolism , Spinal Cord/drug effects , Adrenergic alpha-2 Receptor Agonists/administration & dosage , Animals , Brimonidine Tartrate , Clonidine/administration & dosage , Drug Synergism , Enzyme Inhibitors/pharmacology , Female , Immunohistochemistry , Isoenzymes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligopeptides/administration & dosage , Quinoxalines/administration & dosage , Receptors, Opioid, delta/agonists , Spinal Cord/metabolism
13.
J Cell Mol Med ; 18(6): 1213-25, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24650225

ABSTRACT

Intervertebral disc degeneration (IVD) can result in chronic low back pain, a common cause of morbidity and disability. Inflammation has been associated with IVD degeneration, however the relationship between inflammatory factors and chronic low back pain remains unclear. Furthermore, increased levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are both associated with inflammation and chronic low back pain, but whether degenerating discs release sufficient concentrations of factors that induce nociceptor plasticity remains unclear. Degenerating IVDs from low back pain patients and healthy, painless IVDs from human organ donors were cultured ex vivo. Inflammatory and nociceptive factors released by IVDs into culture media were quantified by enzyme-linked immunosorbent assays and protein arrays. The ability of factors released to induce neurite growth and nociceptive neuropeptide production was investigated. Degenerating discs release increased levels of tumour necrosis factor-α, interleukin-1ß, NGF and BDNF. Factors released by degenerating IVDs increased neurite growth and calcitonin gene-related peptide expression, both of which were blocked by anti-NGF treatment. Furthermore, protein arrays found increased levels of 20 inflammatory factors, many of which have nociceptive effects. Our results demonstrate that degenerating and painful human IVDs release increased levels of NGF, inflammatory and nociceptive factors ex vivo that induce neuronal plasticity and may actively diffuse to induce neo-innervation and pain in vivo.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Intervertebral Disc Degeneration/physiopathology , Low Back Pain/etiology , Low Back Pain/pathology , Neurites/pathology , Neurons/pathology , Nociception/physiology , Adult , Animals , Apoptosis , Blotting, Western , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calcitonin Gene-Related Peptide/genetics , Case-Control Studies , Cell Proliferation , Cells, Cultured , Culture Media, Conditioned/pharmacology , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Intervertebral Disc Degeneration/complications , Low Back Pain/metabolism , Male , Mice , Middle Aged , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Neurites/metabolism , Neurons/metabolism , PC12 Cells , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Young Adult
14.
Neuroimage ; 91: 344-52, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24462776

ABSTRACT

Persistent pain is a central characteristic of neuropathic pain conditions in humans. Knowing whether rodent models of neuropathic pain produce persistent pain is therefore crucial to their translational applicability. We investigated the spared nerve injury (SNI) model of neuropathic pain and the formalin pain model in rats using positron emission tomography (PET) with the metabolic tracer [18F]fluorodeoxyglucose (FDG) to determine if there is ongoing brain activity suggestive of persistent pain. For the formalin model, under brief anesthesia we injected one hindpaw with 5% formalin and the FDG tracer into a tail vein. We then allowed the animals to awaken and observed pain behavior for 30min during the FDG uptake period. The rat was then anesthetized and placed in the scanner for static image acquisition, which took place between minutes 45 and 75 post-tracer injection. A single reference rat brain magnetic resonance image (MRI) was used to align the PET images with the Paxinos and Watson rat brain atlas. Increased glucose metabolism was observed in the somatosensory region associated with the injection site (S1 hindlimb contralateral), S1 jaw/upper lip and cingulate cortex. Decreases were observed in the prelimbic cortex and hippocampus. Second, SNI rats were scanned 3weeks post-surgery using the same scanning paradigm, and region-of-interest analyses revealed increased metabolic activity in the contralateral S1 hindlimb. Finally, a second cohort of SNI rats was scanned while anesthetized during the tracer uptake period, and the S1 hindlimb increase was not observed. Increased brain activity in the somatosensory cortex of SNI rats resembled the activity produced with the injection of formalin, suggesting that the SNI model may produce persistent pain. The lack of increased activity in S1 hindlimb with general anesthetic demonstrates that this effect can be blocked, as well as highlights the importance of investigating brain activity in awake and behaving rodents.


Subject(s)
Brain Chemistry/physiology , Brain/diagnostic imaging , Chronic Pain/metabolism , Chronic Pain/physiopathology , Neuralgia/metabolism , Neuralgia/physiopathology , Animals , Behavior, Animal/physiology , Chronic Pain/diagnostic imaging , Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Ligation , Male , Neuralgia/diagnostic imaging , Pain Measurement , Peroneal Neuropathies/diagnostic imaging , Peroneal Neuropathies/metabolism , Peroneal Neuropathies/physiopathology , Positron-Emission Tomography , Radiopharmaceuticals , Rats , Rats, Sprague-Dawley , Tibial Neuropathy/diagnostic imaging , Tibial Neuropathy/metabolism , Tibial Neuropathy/physiopathology
15.
Breast Cancer Res Treat ; 143(2): 227-37, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24327332

ABSTRACT

In advanced breast cancer, bone metastases occur in 70 % of patients. Managing the devastating pain associated with the disease is difficult. Rapamycin is an immunomodulatory drug that targets the mammalian target of rapamycin pathway. Rapamycin has been shown to decrease osteolysis associated with metastatic breast cancer in pre-clinical models and to reduce pain in inflammatory and neuropathic models. The aim of this study was to evaluate the effectiveness of rapamycin in reducing pain associated with experimental osteolytic metastases. Bone cancer was induced by intra-tibial injections of murine mammary carcinoma cells (4T1) in immunocompetent BALB/c mice and treated intraperitoneally for up to 5 weeks with vehicle, rapamycin or pamidronate (a bisphosphonate currently used to reduce bone loss in bone cancer patients). The control group received intra-tibial injection with saline (sham) and was treated with vehicle intraperitoneally. Cancer-induced osteolysis was observed histologically and radiographically 2-3 weeks following cancer inoculation and gradually increased with time. Measures of evoked nociceptive behaviors including sensitivity to mechanical, thermal, and cold stimuli and spontaneous nociceptive behaviors (limping, guarding) were evaluated. Significant hypersensitivity to sensory stimuli developed in cancer-bearing mice compared to sham 3 weeks following inoculation. Rapamycin decreased or delayed the development of cancer-induced mechanical, heat, and cold hypersensitivity, while pamidronate reduced heat and cold hypersensitivity. Both rapamycin and pamidronate had a partial protective effect on the spontaneous nociceptive behaviors, limping and guarding. Our data suggest that rapamycin may have efficacy in the management of pain associated with metastatic breast cancer.


Subject(s)
Bone Neoplasms/drug therapy , Diphosphonates/therapeutic use , Osteolysis/drug therapy , Pain/drug therapy , Sirolimus/therapeutic use , Animals , Antibiotics, Antineoplastic/therapeutic use , Bone Density Conservation Agents/therapeutic use , Bone Neoplasms/secondary , Cell Line, Tumor , Disease Models, Animal , Female , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Pain Measurement , Pamidronate , TOR Serine-Threonine Kinases/antagonists & inhibitors
16.
Front Pain Res (Lausanne) ; 5: 1394017, 2024.
Article in English | MEDLINE | ID: mdl-38770243

ABSTRACT

Introduction: Low back pain is the most common type of chronic pain. We examined pain-related behaviors across 18 weeks in rats that received injury to one or two lumbar intervertebral discs (IVD) to determine if multi-level disc injuries enhance/prolong pain. Methods: Twenty-three Sprague-Dawley adult female rats were used: 8 received disc puncture (DP) of one lumbar IVD (L5/6, DP-1); 8 received DP of two lumbar IVDs (L4/5 & L5/6, DP-2); 8 underwent sham surgery. Results: DP-2 rats showed local (low back) sensitivity to pressure at 6- and 12-weeks post-injury, and remote sensitivity to pressure (upper thighs) at 12- and 18-weeks and touch (hind paws) at 6, 12 and 18-weeks. DP-1 rats showed local and remote pressure sensitivity at 12-weeks only (and no tactile sensitivity), relative to Sham DP rats. Both DP groups showed reduced distance traveled during gait testing over multiple weeks, compared to pre-injury; only DP-2 rats showed reduced distance relative to Sham DP rats at 12-weeks. DP-2 rats displayed reduced positive interactions with a novel adult female rat at 3-weeks and hesitation and freezing during gait assays from 6-weeks onwards. At study end (18-weeks), radiological and histological analyses revealed reduced disc height and degeneration of punctured IVDs. Serum BDNF and TNFα levels were higher at 18-weeks in DP-2 rats, relative to Sham DP rats, and levels correlated positively with remote sensitivity in hind paws (tactile) and thighs (pressure). Discussion: Thus, multi-level disc injuries resulted in earlier, prolonged and greater discomfort locally and remotely, than single-level disc injury. BDNF and TNFα may have contributing roles.

17.
J Neurosci ; 32(14): 4827-40, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22492038

ABSTRACT

Opioid tendency to generate analgesic tolerance has been previously linked to biased internalization. Here, we assessed an alternative possibility; whether tolerance of delta opioid receptor agonists (DORs) could be related to agonist-specific recycling. A first series of experiments revealed that DOR internalization by DPDPE and SNC-80 was similar, but only DPDPE induced recycling. We then established that the non-recycling agonist SNC-80 generated acute analgesic tolerance that was absent in mice treated with DPDPE. Furthermore, both agonists stabilized different conformations, whose distinct interaction with Gßγ subunits led to different modalities of ß-arrestin2 (ßarr2) recruitment. In particular, bioluminescence resonance energy transfer (BRET) assays revealed that sustained activation by SNC-80 drew the receptor C terminus in close proximity of the N-terminal domain of Gγ2, causing ßarr2 to interact with receptors and Gßγ subunits. DPDPE moved the receptor C-tail away from the Gßγ dimer, resulting in ßarr2 recruitment to the receptor but not in the vicinity of Gγ2. These differences were associated with stable DOR-ßarr2 association, poor recycling, and marked desensitization following exposure to SNC-80, while DPDPE promoted transient receptor interaction with ßarr2 and effective recycling, which conferred protection from desensitization. Together, these data indicate that DORs may adopt ligand-specific conformations whose distinct recycling properties determine the extent of desensitization and are predictive of analgesic tolerance. Based on these findings, we propose that the development of functionally selective DOR ligands that favor recycling could constitute a valid strategy for the production of longer acting opioid analgesics.


Subject(s)
Analgesics, Opioid/metabolism , Arrestins/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/metabolism , Analgesics, Opioid/pharmacology , Animals , Animals, Newborn , Arrestins/physiology , Cell Line, Transformed , Cells, Cultured , Drug Tolerance/physiology , GTP-Binding Protein beta Subunits/physiology , GTP-Binding Protein gamma Subunits/physiology , HEK293 Cells , Humans , Male , Mice , Protein Binding/drug effects , Protein Binding/physiology , Protein Transport/drug effects , Protein Transport/physiology , Rats , beta-Arrestins
18.
Mol Pain ; 9: 21, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23597049

ABSTRACT

BACKGROUND: Peripheral nerve injury can have long-term consequences including pain-related manifestations, such as hypersensitivity to cutaneous stimuli, as well as affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. Changes in brain structure and cortical function associated with many chronic pain conditions have been reported in the prefrontal cortex (PFC). The PFC is implicated in pain-related co-morbidities such as depression, anxiety and impaired emotional decision-making ability. We recently reported that this region is subject to significant epigenetic reprogramming following peripheral nerve injury, and normalization of pain-related structural, functional and epigenetic abnormalities in the PFC are all associated with effective pain reduction. In this study, we used the Spared Nerve Injury (SNI) model of neuropathic pain to test the hypothesis that peripheral nerve injury triggers persistent long-lasting changes in gene expression in the PFC, which alter functional gene networks, thus providing a possible explanation for chronic pain associated behaviors. RESULTS: SNI or sham surgery where performed in male CD1 mice at three months of age. Six months after injury, we performed transcriptome-wide sequencing (RNAseq), which revealed 1147 differentially regulated transcripts in the PFC in nerve-injured vs. control mice. Changes in gene expression occurred across a number of functional gene clusters encoding cardinal biological processes as revealed by Ingenuity Pathway Analysis. Significantly altered biological processes included neurological disease, skeletal muscular disorders, behavior, and psychological disorders. Several of the changes detected by RNAseq were validated by RT-QPCR and included transcripts with known roles in chronic pain and/or neuronal plasticity including the NMDA receptor (glutamate receptor, ionotropic, NMDA; grin1), neurite outgrowth (roundabout 3; robo3), gliosis (glial fibrillary acidic protein; gfap), vesicular release (synaptotagmin 2; syt2), and neuronal excitability (voltage-gated sodium channel, type I; scn1a). CONCLUSIONS: This study used an unbiased approach to document long-term alterations in gene expression in the brain following peripheral nerve injury. We propose that these changes are maintained as a memory of an insult that is temporally and spatially distant from the initial injury.


Subject(s)
Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Transcriptome/genetics , Animals , Behavior, Animal , Down-Regulation/genetics , Male , Mice , Neuralgia/genetics , Neuralgia/pathology , Organ Specificity/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Transcription, Genetic , Up-Regulation/genetics
19.
J Pharmacol Exp Ther ; 347(3): 773-80, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24039246

ABSTRACT

Spinal administration of opioid and α2-adrenergic receptor (α2AR) agonists produces analgesia, and agonists interact synergistically when coadministered. The molecular mechanism underlying this synergy is largely unknown. Pharmacological studies have identified both the delta and the mu-opioid receptors (DOR and MOR) as candidate receptors capable of interacting synergistically with α2AR agonists. However, recent studies attribute the antinociceptive effect of DOR agonists to actions at the MOR, calling the role of DOR in opioid-adrenergic synergy into question. Other studies suggesting that DOR is implicated in morphine antinociception raise the possibility that DOR is nonetheless required for morphine synergy with α2AR agonists. This study aimed to determine whether DOR activation is sufficient and necessary to mediate opioid-adrenergic synergistic interactions in the spinal cord. The antinociceptive effects of clonidine, [D-Ala(2)]-deltorphin II (DeltII), morphine, and [D-Ala(2), N-Me-Phe(4), Gly-ol(5)]-enkephalin (DAMGO) were evaluated using the substance P (SP) behavioral assay in wild type (WT) and DOR-knockout (KO) mice. Opioid-adrenergic drug interactions were evaluated after spinal coadministration of clonidine with DeltII, morphine, or DAMGO. Isobolographic analyses of dose-response curves determined whether interactions were synergistic or additive. The absence of DeltII antinociceptive efficacy in DOR-KO confirmed its selectivity in the SP assay. Although DeltII+clonidine interacted synergistically in WT mice, no interaction with clonidine was observed in DOR-KO mice. Clonidine was synergistic with morphine in both mouse strains. DAMGO did not synergize with clonidine in either strain. These findings confirm that although other opioid receptors can interact synergistically with α2AR agonists, DOR is sufficient for spinal opioid-adrenergic interactions.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Analgesics, Opioid/pharmacology , Receptors, Opioid, delta/drug effects , Spinal Cord/drug effects , Animals , Behavior, Animal/drug effects , Clonidine/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Injections, Spinal , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Opioid, mu/drug effects , Substance P/pharmacology
20.
Behav Brain Funct ; 9: 22, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-24025218

ABSTRACT

BACKGROUND: In animal models, the impact of social and environmental manipulations on chronic pain have been investigated in short term studies where enrichment was implemented prior to or concurrently with the injury. The focus of this study was to evaluate the impact of environmental enrichment or impoverishment in mice three months after induction of chronic neuropathic pain. METHODS: Thirty-four CD-1 seven to eight week-old male mice were used. Mice underwent surgery on the left leg under isoflurane anesthesia to induce the spared nerve injury model of neuropathic pain or sham condition. Mice were then randomly assigned to one of four groups: nerve injury with enriched environment (n = 9), nerve injury with impoverished environment (n = 8), sham surgery with enriched environment (n = 9), or sham surgery with impoverished environment (n = 8). The effects of environmental manipulations on mechanical (von Frey filaments) heat (hot plate) and cold (acetone test) cutaneous hypersensitivities, motor impairment (Rotarod), spontaneous exploratory behavior (open field test), anxiety-like behavior (elevated plus maze) and depression-like phenotype (tail suspension test) were assessed in neuropathic and control mice 1 and 2 months post-environmental change. Finally, the effect of the environment on spinal expression of the pro-nociceptive neuropeptides substance P and CGRP form the lumbar spinal cord collected at the end of the study was evaluated by tandem liquid chromatography mass spectrometry. RESULTS: Environmental enrichment attenuated nerve injury-induced hypersensitivity to mechanical and cold stimuli. In contrast, an impoverished environment exacerbated mechanical hypersensitivity. No antidepressant effects of enrichment were observed in animals with chronic neuropathic pain. Finally, environmental enrichment resulted lower SP and CGRP concentrations in neuropathic animals compared to impoverishment. These effects were all observed in animals that had been neuropathic for several months prior to intervention. CONCLUSIONS: These results suggest that environmental factors could play an important role in the rehabilitation of chronic pain patients well after the establishment of chronic pain. Enrichment is a potentially inexpensive, safe and easily implemented non-pharmacological intervention for the treatment of chronic pain.


Subject(s)
Chronic Pain/therapy , Environment , Neuralgia/therapy , Animals , Behavior, Animal/physiology , Chronic Pain/etiology , Chronic Pain/psychology , Exploratory Behavior/physiology , Male , Mice , Neuralgia/etiology , Neuralgia/psychology , Pain Measurement , Peripheral Nerve Injuries/complications
SELECTION OF CITATIONS
SEARCH DETAIL