Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS Pathog ; 14(4): e1006989, 2018 04.
Article in English | MEDLINE | ID: mdl-29652922

ABSTRACT

The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Adenine Nucleotides/metabolism , Endoribonucleases/antagonists & inhibitors , Murine hepatitis virus/physiology , Oligoribonucleotides/metabolism , Theilovirus/metabolism , Viral Proteins/metabolism , Animals , Antiviral Agents/metabolism , Endoribonucleases/physiology , HeLa Cells , Hepatitis, Viral, Animal/metabolism , Hepatitis, Viral, Animal/virology , Host-Pathogen Interactions , Humans , Mice
2.
Sci Rep ; 13(1): 15211, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709916

ABSTRACT

Thrombopoietin (TPO) is the primary regulator of platelet generation and a stimulator of multilineage hematopoietic recovery following exposure to total body irradiation (TBI). JNJ­26366821, a novel PEGylated TPO mimetic peptide, stimulates platelet production without developing neutralizing antibodies or causing any adverse effects. Administration of a single dose of JNJ­26366821 demonstrated its efficacy as a prophylactic countermeasure in various mouse strains (males CD2F1, C3H/HeN, and male and female C57BL/6J) exposed to Co-60 gamma TBI. A dose dependent survival efficacy of JNJ­26366821 (- 24 h) was identified in male CD2F1 mice exposed to a supralethal dose of radiation. A single dose of JNJ­26366821 administered 24, 12, or 2 h pre-radiation resulted in 100% survival from a lethal dose of TBI with a dose reduction factor of 1.36. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pre-treated with JNJ­26366821. The drug also increased bone marrow cellularity and megakaryocytes, accelerated multi-lineage hematopoietic recovery, and alleviated radiation-induced soluble markers of bone marrow aplasia and endothelial damage. These results indicate that JNJ­26366821 is a promising prophylactic radiation countermeasure for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.


Subject(s)
Acute Radiation Syndrome , Neutropenia , Female , Male , Animals , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Thrombopoietin/pharmacology , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Polyethylene Glycols/pharmacology
3.
J Infect Dis ; 204 Suppl 3: S817-24, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21987757

ABSTRACT

The virion protein 40 (VP40) and nucleoprotein (NP) of Ebola (EBOV) and Marburg viruses (MARV) play key roles during virion assembly and egress. The ability to detect interactions between VP40-VP40, VP40-NP, and NP-NP and follow these complexes as they traffic through mammalian cells would enhance our understanding of the molecular events leading to filovirus assembly and budding, and provide new insights into filovirus replication and pathogenesis. Here, we successfully employed a bimolecular complementation (BiMC) approach to visualize interactions between EBOV and MARV VP40-VP40, NP-NP, and VP40-NP proteins and localize these protein complexes in mammalian cells using confocal microscopy. We demonstrate that VP40-VP40 complexes localized predominantly at the plasma membrane, whereas VP40-NP and NP-NP complexes displayed a more dispersed pattern throughout the cytoplasm. As expected based on previous findings, efficient interactions between EBOV or MARV VP40-VP40 proteins were independent of L-domains PTAPPEY and PPPY, respectively. In contrast, the formation of EBOV or MARV VP40-VP40 complexes was dependent on the previously characterized LPLGVA and LPLGIM motifs of EBOV and MARV VP40 proteins, respectively, indicating that these motifs are important for VP40 oligomerization and subsequent budding. These results highlight the feasibility and usefulness of the BiMC approach as a strategy to further characterize both filovirus protein interactions as well as filovirus-host interactions in real time in the natural environment of the cell.


Subject(s)
Ebolavirus/metabolism , Gene Expression Regulation, Viral/physiology , Marburgvirus/metabolism , Nucleoproteins/metabolism , Viral Matrix Proteins/metabolism , Ebolavirus/genetics , Genetic Complementation Test , HEK293 Cells , Humans , Marburgvirus/genetics , Mutation , Nucleoproteins/genetics , Recombinant Proteins , Viral Matrix Proteins/genetics
4.
Genes (Basel) ; 13(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36292639

ABSTRACT

Acute Radiation Syndrome (ARS) is a syndrome involving damage to multiple organs caused by exposure to a high dose of ionizing radiation over a short period of time; even low doses of radiation damage the radiosensitive hematopoietic system and causes H-ARS. PLacenta eXpanded (PLX)-R18 is a 3D-expanded placenta-derived stromal cell product designated for the treatment of hematological disorders. These cells have been shown in vitro to secrete hematopoietic proteins, to stimulate colony formation, and to induce bone marrow migration. Previous studies in mice showed that PLX-R18 cells responded to radiation-induced hematopoietic failure by transiently secreting hematopoiesis related proteins to enhance reconstitution of the hematopoietic system. We assessed the potential effect of prophylactic PLX-R18 treatment on H-ARS. PLX-R18 cells were administered intramuscularly to C57BL/6 mice, −1 and 3 days after (LD70/30) total body irradiation. PLX R18 treatment significantly increased survival after irradiation (p < 0.0005). In addition, peripheral blood and bone marrow (BM) cellularity were monitored at several time points up to 30 days. PLX-R18 treatment significantly increased the number of colony-forming hematopoietic progenitors in the femoral BM and significantly raised peripheral blood cellularity. PLX-R18 administration attenuated biomarkers of bone marrow aplasia (EPO, FLT3L), sepsis (SAA), and systemic inflammation (sP-selectin and E-selectin) and attenuated radiation-induced inflammatory cytokines/chemokines and growth factors, including G-CSF, MIP-1a, MIP-1b, IL-2, IL-6 and MCP-1, In addition, PLX-R18 also ameliorated radiation-induced upregulation of pAKT. Taken together, prophylactic PLX-R18 administration may serve as a protection measure, mitigating bone marrow failure symptoms and systemic inflammation in the H-ARS model.


Subject(s)
Acute Radiation Syndrome , Hematopoietic System , Mice , Animals , E-Selectin/therapeutic use , Interleukin-2/therapeutic use , Interleukin-6 , Mice, Inbred C57BL , Acute Radiation Syndrome/drug therapy , Hematopoietic System/metabolism , Granulocyte Colony-Stimulating Factor/therapeutic use , Cytokines , Biomarkers , Inflammation
5.
Sci Rep ; 12(1): 3485, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241733

ABSTRACT

The threat of a nuclear attack has increased in recent years highlighting the benefit of developing additional therapies for the treatment of victims suffering from Acute Radiation Syndrome (ARS). In this work, we evaluated the impact of a PEGylated thrombopoietin mimetic peptide, JNJ-26366821, on the mortality and hematopoietic effects associated with ARS in mice exposed to lethal doses of total body irradiation (TBI). JNJ-26366821 was efficacious as a mitigator of mortality and thrombocytopenia associated with ARS in both CD2F1 and C57BL/6 mice exposed to TBI from a cobalt-60 gamma-ray source. Single administration of doses ranging from 0.3 to 1 mg/kg, given 4, 8, 12 or 24 h post-TBI (LD70 dose) increased survival by 30-90% as compared to saline control treatment. At the conclusion of the 30-day study, significant increases in bone marrow colony forming units and megakaryocytes were observed in animals administered JNJ-26366821 compared to those administered saline. In addition, enhanced recovery of FLT3-L levels was observed in JNJ-26366821-treated animals. Probit analysis of survival in the JNJ-26366821- and saline-treated cohorts revealed a dose reduction factor of 1.113 and significant increases in survival for up to 6 months following irradiation. These results support the potential use of JNJ-26366821 as a medical countermeasure for treatment of acute TBI exposure in case of a radiological/nuclear event when administered from 4 to 24 h post-TBI.


Subject(s)
Acute Radiation Syndrome , Biomimetic Materials , Hematopoietic System , Thrombopoietin , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Animals , Biomimetic Materials/pharmacology , Hematopoietic System/pathology , Hematopoietic System/radiation effects , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/pathology , Thrombopoietin/pharmacology , Whole-Body Irradiation
6.
Front Pharmacol ; 12: 785165, 2021.
Article in English | MEDLINE | ID: mdl-34912229

ABSTRACT

[This corrects the article DOI: 10.3389/fphar.2020.587970.].

7.
Front Pharmacol ; 11: 587970, 2020.
Article in English | MEDLINE | ID: mdl-33343356

ABSTRACT

Radiation injury will result in multiorgan dysfuntion leading to multiorgan failure. In addition to many factors such as radiation dose, dose rate, the severity of the injury will also depend on organ systems which are exposed. Here, we report the protective property of gamma tocotrienol (GT3) in total as well as partial body irradiation (PBI) model in C3H/HeN male mice. We have carried out PBI by targeting thoracic region (lung-PBI) using Small Animal Radiation Research Platform, an X-ray irradiator with capabilities of an image guided irradiation with a variable collimator with minimized exposure to non-targeted tissues and organs. Precise and accurate irradiation of lungs was carried out at either 14 or 16 Gy at an approximate dose rate of 2.6 Gy/min. Though a low throughput model, it is amenable to change the field size on the spot. No damage to other non-targeted organs was observed in histopathological evaluation. There was no significant change in peripheral blood counts of irradiated mice in comparison to naïve mice. Femoral bone marrow cells had no damage in irradiated mice. As expected, damage to the targeted tissue was observed in the histopathological evaluation and non-targeted tissue was found normal. Regeneration and increase of cellularity and megakaryocytes on GT3 treatment was compared to significant loss of cellularity in saline group. Peak alveolitis was observed on day 14 post-PBI and protection from alveolitis by GT3 was noted. In irradiated lung tissue, thirty proteins were found to be differentially expressed but modulated by GT3 to reverse the effects of irradiation. We propose that possible mode of action of GT3 could be Angiopoietin 2-Tie2 pathway leading to AKT/ERK pathways resulting in disruption in cell survival/angiogenesis.

8.
Sci Rep ; 10(1): 6825, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321983

ABSTRACT

The threat of nuclear exposure is heightened and it is imperative to identify potential countermeasures for acute radiation syndrome. Currently no countermeasures have been approved for prophylactic administration. Effective countermeasures should function to increase survival in the short term as well as to increase the overall prognosis of an exposed individual long term. Here we describe the use of a promising radiation countermeasure, BBT-059, and the results of a long term mouse study (up to 12 months) in the male CD2F1 strain using 60Co gamma irradiation (~0.6 Gy/min, 7.5-12.5 Gy). We report the dose reduction factor of 1.28 for BBT-059 (0.3 mg/kg) compared to control administered 24 h prior to irradiation. In the long term study animals showed accelerated recovery in peripheral blood cell counts, bone marrow colony forming units, sternal cellularity and megakaryocyte numbers in drug treated mice compared to formulation buffer. In addition, increased senescence was observed in the kidneys of animals administered control or drug and exposed to the highest doses of radiation. Decreased levels of E-cadherin, LaminB1 and increased levels of Cyc-D and p21 in spleen lysates were observed in animals administered control. Taken together the results indicate a high level of protection following BBT-059 administration in mice exposed to lethal and supralethal doses of total body gamma-radiation.


Subject(s)
Interleukin-11/pharmacology , Radiation Exposure , Whole-Body Irradiation , Alkaline Phosphatase/blood , Animals , Aspartate Aminotransferases/blood , Blood Cell Count , Cadherins/metabolism , Clone Cells , Colony-Forming Units Assay , Dose-Response Relationship, Radiation , Gamma Rays , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Kidney/pathology , Kidney/radiation effects , Liver/pathology , Liver/radiation effects , Male , Mice , Organ Specificity/radiation effects , Survival Analysis
9.
Front Aging Neurosci ; 11: 357, 2019.
Article in English | MEDLINE | ID: mdl-31956306

ABSTRACT

Mitochondria are linked with various radiation responses, including mitophagy, genomic instability, apoptosis, and the bystander effect. Mitochondria play an important role in preserving cellular homeostasis during stress responses, and dysfunction in mitochondrial contributes to aging, carcinogenesis and neurologic diseases. In this study, we have investigated the mitochondrial degeneration and autophagy in the hippocampal region of brains from mice administered with BBT-059, a long-acting interleukin-11 analog, or its formulation buffer 24 h prior to irradiation at different radiation doses collected at 6 and 12 months post-irradiation. The results demonstrated a higher number of degenerating mitochondria in 12 Gy BBT-059 treated mice after 6 months and 11.5 Gy BBT-059 treated mice after 12 months as compared to the age-matched naïve (non-irradiated control animals). Apg5l, Lc3b and Sqstm1 markers were used to analyze the autophagy in the brain, however only the Sqstm1 marker exhibited significantly reduced expression after 12 months in 11.5 Gy BBT-059 treated mice as compared to naïve. Immunohistochemistry (IHC) results of Bcl2 also demonstrated a decrease in expression after 12 months in 11.5 Gy BBT-059 treated mice as compared to other groups. In conclusion, our results demonstrated that higher doses of ionizing radiation (IR) can cause persistent upregulation of mitochondrial degeneration. Reduced levels of Sqstm1 and Bcl2 can lead to intensive autophagy which can lead to degradation of cellular structure.

10.
Health Phys ; 115(1): 65-76, 2018 07.
Article in English | MEDLINE | ID: mdl-29787432

ABSTRACT

Interleukin-11 was developed to reduce chemotherapy-induced thrombocytopenia; however, its clinical use was limited by severe adverse effects in humans. PEGylated interleukin-11 (BBT-059), developed by Bolder Biotechnology, Inc., exhibited a longer half-life in rodents and induced longer-lasting increases in hematopoietic cells than interleukin-11. A single dose of 1.2 mg kg of BBT-059, administered subcutaneously to CD2F1 mice (12-14 wk, male) was found to be safe in a 14 d toxicity study. The drug demonstrated its efficacy both as a prophylactic countermeasure and a mitigator in CD2F1 mice exposed to Co gamma total-body irradiation. A single dose of 0.3 mg kg, administered either 24 h pre-, 4 h post-, or 24 h postirradiation increased the survival of mice to 70-100% from lethal doses of radiation. Preadministration (-24 h) of the drug conferred a significantly (p < 0.05) higher survival compared to 24 h post-total-body irradiation. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pretreated with BBT-059. The drug also increased bone marrow cellularity and megakaryocytes and accelerated multilineage hematopoietic recovery. In addition, BBT-059 inhibited the induction of radiation-induced hematopoietic biomarkers, thrombopoietin, erythropoietin, and Flt-3 ligand. These results indicate that BBT-059 is a promising radiation countermeasure, demonstrating its potential to be used both pre- and postirradiation for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.


Subject(s)
Acute Radiation Syndrome/drug therapy , Hematopoietic System/drug effects , Interleukin-11/administration & dosage , Polyethylene Glycols/chemistry , Radiation Injuries, Experimental/drug therapy , Whole-Body Irradiation/adverse effects , Acute Radiation Syndrome/etiology , Animals , Dose-Response Relationship, Radiation , Hematopoietic System/pathology , Hematopoietic System/radiation effects , Interleukin-11/chemistry , Male , Mice , Radiation Injuries, Experimental/etiology
SELECTION OF CITATIONS
SEARCH DETAIL