Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell Mol Life Sci ; 79(8): 410, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35821533

ABSTRACT

Beyond well-assessed risk factors, cardiovascular events could be also associated with the presence of epigenetic and genetic alterations, such as the methylenetetrahydrofolate-reductase (MTHFR) C677T polymorphism. This gene variant is related to increased circulating levels of homocysteine (Hcy) and cardiovascular risk. However, heterozygous carriers have an augmented risk of cardiovascular accidents independently from normal Hcy levels, suggesting the presence of additional deregulated processes in MTHFR C677T carriers. Here, we hypothesize that targeting Sirtuin 1 (SIRT1) could be an alternative mechanism to control the cardiovascular risk associated to MTHFR deficiency condition. Flow Mediated Dilatation (FMD) and light transmission aggregometry assay were performed in subjects carrying MTHFR C677T allele after administration of resveratrol, the most powerful natural clinical usable compound that owns SIRT1 activating properties. MTHFR C677T carriers with normal Hcy levels revealed endothelial dysfunction and enhanced platelet aggregation associated with SIRT1 downregulation. SIRT1 activity stimulation by resveratrol intake was able to override these abnormalities without affecting Hcy levels. Impaired endothelial function, bleeding time, and wire-induced thrombus formation were rescued in a heterozygous Mthfr-deficient (Mthfr+/-) mouse model after resveratrol treatment. Using a cell-based high-throughput multiplexed screening (HTS) assay, a novel selective synthetic SIRT1 activator, namely ISIDE11, was identified. Ex vivo and in vivo treatment of Mthfr+/- mice with ISIDE11 rescues endothelial vasorelaxation and reduces wire-induced thrombus formation, effects that were abolished by SIRT1 inhibitor. Moreover, platelets from MTHFR C677T allele carriers treated with ISIDE11 showed normalization of their typical hyper-reactivity. These results candidate SIRT1 activation as a new therapeutic strategy to contain cardio and cerebrovascular events in MTHFR carriers.


Subject(s)
Homocystinuria , Methylenetetrahydrofolate Reductase (NADPH2) , Sirtuin 1 , Thrombosis , Animals , Genotype , Homocystinuria/drug therapy , Homocystinuria/metabolism , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Mice , Muscle Spasticity , Psychotic Disorders/metabolism , Resveratrol/pharmacology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thrombosis/drug therapy , Thrombosis/genetics , Thrombosis/metabolism , Thrombosis/prevention & control
2.
Int J Food Sci Nutr ; 74(3): 382-394, 2023 May.
Article in English | MEDLINE | ID: mdl-37260396

ABSTRACT

Evidence on habitual Mediterranean diet (MD) and risk of SARS-CoV-2 infection, and COVID-19 is limited. 1,520 participants from the Moli-sani Study (2017-2020) were tested during January-September 2021 and adherence to MD was ascertained through the Mediterranean Diet Score (MDS). SARS-CoV-2 infection cases were determined through serology, and previous clinical diagnosis of COVID-19 disease was self-reported. Results were presented as odd ratios (OR) with 95% confidence intervals (CI). The MDS was not associated with the likelihood of SARS-CoV-2 infection (OR= 0.94; 95% CI: 0.83-1.06) and COVID-19 (OR= 0.82; 95% CI: 0.62-1.10) diagnosis. High consumption of cereals was associated with lower odds of SARS-CoV-2 infection (OR = 0.91; 95% CI: 0.83-1.00; for each 25 g/d increase). Likelihood of having being diagnosed with COVID-19 disease decreased in association with increasing olive oil intake (OR= 0.10; 95% CI: 0.01-0.79; for each additional 10 g/d), moderate alcohol consumption (OR= 0.18; 95% CI: 0.04-0.82) and higher intakes of fruits and nuts (OR = 0.89; 95% CI: 0.79-0.99). Our findings emphasise the adoption and maintenance of a balanced MD as a key strategy to reduce the risk of future SARS-CoV-2 infections and COVID-19.


Subject(s)
COVID-19 , Diet, Mediterranean , Humans , COVID-19/epidemiology , SARS-CoV-2
3.
Mult Scler ; 26(10): 1237-1246, 2020 09.
Article in English | MEDLINE | ID: mdl-31161863

ABSTRACT

BACKGROUND: Previous studies evidenced a link between metabolic dysregulation, inflammation, and neurodegeneration in multiple sclerosis (MS). OBJECTIVES: To explore whether increased adipocyte mass expressed as body mass index (BMI) and increased serum lipids influence cerebrospinal fluid (CSF) inflammation and disease severity. METHODS: In this cross-sectional study, 140 consecutive relapsing-remitting (RR)-MS patients underwent clinical assessment, BMI evaluation, magnetic resonance imaging scan, and blood and CSF collection before any specific drug treatment. The CSF levels of the following cytokines, adipocytokines, and inflammatory factors were measured: interleukin (IL)-6, IL-13, granulocyte macrophage colony-stimulating factor, leptin, ghrelin, osteoprotegerin, osteopontin, plasminogen activator inhibitor-1, resistin, and Annexin A1. Serum levels of triglycerides, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were assessed. RESULTS: A positive correlation emerged between BMI and Expanded Disability Status Scale score. Obese RR-MS patients showed higher clinical disability, increased CSF levels of the proinflammatory molecules IL-6 and leptin, and reduced concentrations of the anti-inflammatory cytokine IL-13. Moreover, both the serum levels of triglycerides and TC/HDL-C ratio showed a positive correlation with IL-6 CSF concentrations. CONCLUSION: Obesity and altered lipid profile are associated with exacerbated central inflammation and higher clinical disability in RR-MS at the time of diagnosis. Increased adipocytokines and lipids can mediate the negative impact of high adiposity on RR-MS course.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Cross-Sectional Studies , Humans , Inflammation , Multiple Sclerosis/complications , Multiple Sclerosis, Relapsing-Remitting/complications , Obesity/complications
4.
Br J Nutr ; 123(2): 190-197, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31554528

ABSTRACT

A mixture of natural ingredients, namely, DHA, phosphatidylcholine, silymarin, choline, curcumin and d-α-tocopherol, was studied in subjects with non-alcoholic fatty liver disease (NAFLD). Primary endpoints were serum levels of hepatic enzymes, and other parameters of liver function, the metabolic syndrome and inflammation were the secondary endpoints. The coagulation-fibrinolysis balance was also thoroughly investigated, as NAFLD is associated with haemostatic alterations, which might contribute to increased cardiovascular risk of this condition. The present study involved a double-blind, randomised, multicentre controlled trial of two parallel groups. Subjects with NAFLD (18-80 years, either sex) received the active or control treatment for 3 months. All assays were performed on a total of 113 subjects before and at the end of supplementation. The hepatic enzymes aspartate aminotransferase (AST), alanine aminotransferase and γ-glutamyl transpeptidase decreased from 23·2 to 3·7 % after treatment, only the AST levels reaching statistical significance. However, no differences were found between control and active groups. Metabolic and inflammatory variables were unchanged, except for a slight (less than 10 %) increase in cholesterol and glucose levels after the active treatment. Coagulation-fibrinolytic parameters were unaffected by either treatment. In conclusion, chronic supplementation with the mixture of dietary compounds was well tolerated and apparently safe in NAFLD subjects. The trial failed to demonstrate any efficacy on relevant physiopathological markers, but its protocol and results may be useful to design future studies with natural compounds.


Subject(s)
Dietary Supplements , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diet therapy , Adult , Aged , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Biomarkers/blood , Choline/therapeutic use , Curcumin/therapeutic use , Docosahexaenoic Acids/therapeutic use , Double-Blind Method , Drug Combinations , Female , Fibrinolysis/drug effects , Humans , Male , Middle Aged , Phosphatidylcholines/therapeutic use , Silymarin/therapeutic use , Tocopherols/therapeutic use , gamma-Glutamyltransferase/blood
5.
BMC Neurol ; 20(1): 258, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600288

ABSTRACT

BACKGROUND: Leukodystrophies are familial heterogeneous disorders primarily affecting the white matter, which are defined as hypomyelinating or demyelinating based on disease severity as assessed at MRI. Recently, a group of clinically overlapping hypomyelinating leukodystrophies (HL) has been associated with mutations in RNA polymerase III enzymes (Pol III) subunits. CASE PRESENTATION: In this manuscript, we describe two Italian siblings carrying a novel POLR3A genotype. MRI imaging, genetic analysis, and clinical data led to diagnosing HL type 7. The female sibling, at the age of 34, is tetra-paretic and suffers from severe cognitive regression. She had a disease onset at the age of 19, characterized by slow and progressive cognitive impairment associated with gait disturbances and amenorrhea. The male sibling was diagnosed during an MRI carried out for cephalalgia at the age of 41. After 5 years, he developed mild cognitive impairment, dystonia with 4-limb hypotonia, and moderate dysmetria with balance and gait impairment. CONCLUSIONS: The present study provides the first evidence of unusually late age of onset in HL, describing two siblings with a novel POLR3A genotype which showed the first symptoms at the age of 41 and 19, respectively. This provides a powerful insight into clinical heterogeneity and genotype-phenotype correlation in POLR3A related HL.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases/genetics , RNA Polymerase III/genetics , Adult , Age of Onset , Brain/pathology , Female , Genotype , Hereditary Central Nervous System Demyelinating Diseases/pathology , Humans , Magnetic Resonance Imaging , Male , Mutation , Siblings , White Matter/pathology
6.
Int J Mol Sci ; 21(2)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31968687

ABSTRACT

Recently, several studies focused on the genetics of gliomas. This allowed identifying several germline loci that contribute to individual risk for tumor development, as well as various somatic mutations that are key for disease classification. Unfortunately, none of the germline loci clearly confers increased risk per se. Contrariwise, somatic mutations identified within the glioma tissue define tumor genotype, thus representing valid diagnostic and prognostic markers. Thus, genetic features can be used in glioma classification and guided therapy. Such copious genomic variabilities are screened routinely in glioma diagnosis. In detail, Sanger sequencing or pyrosequencing, fluorescence in-situ hybridization, and microsatellite analyses were added to immunohistochemistry as diagnostic markers. Recently, Next Generation Sequencing was set-up as an all-in-one diagnostic tool aimed at detecting both DNA copy number variations and mutations in gliomas. This approach is widely used also to detect circulating tumor DNA within cerebrospinal fluid from patients affected by primary brain tumors. Such an approach is providing an alternative cost-effective strategy to genotype all gliomas, which allows avoiding surgical tissue collection and repeated tumor biopsies. This review summarizes available molecular features that represent solid tools for the genetic diagnosis of gliomas at present or in the next future.


Subject(s)
Biomarkers, Tumor/genetics , Genetic Loci/genetics , Glioma/genetics , Brain Neoplasms/pathology , Circulating Tumor DNA/cerebrospinal fluid , DNA Copy Number Variations , Genomics , Glioma/diagnosis , Glioma/pathology , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Mutation , Pathology, Molecular , Sequence Analysis, DNA
7.
Arch Ital Biol ; 155(4): 110-117, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29405028

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease clinically characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease, and over the last decade, identification of mutations in about 20 genes predisposing to these disorders has provided the means to better understand their pathogenesis. Next Generation sequencing (NGS) is an advanced high-throughput DNA sequencing technology which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic neurological and neurodegenerative diseases. These strategies allowed to rapidly identify disease-associated variants and genetic risk factors for both familial (fALS) and sporadic ALS (sALS), strongly contributing to the knowledge of the genetic architecture of ALS. Moreover, as the number of ALS genes grows, many of the proteins they encode are in intracellular processes shared with other known diseases, suggesting an overlapping of clinical and phatological features between different diseases. To emphasize this concept, the review focuses on genes coding for Valosin-containing protein (VPC) and two Heterogeneous nuclear RNA-binding proteins (HNRNPA1 and hnRNPA2B1), recently idefied through NGS, where different mutations have been associated in both ALS and other neurological and neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , High-Throughput Nucleotide Sequencing/methods , Genotype , Humans , Phenotype
8.
Biomedicines ; 11(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36672686

ABSTRACT

BACKGROUND: Osteopontin, an extracellular matrix protein involved in bone remodeling, tissue repair and inflammation, has previously been associated with increased inflammation and neurodegeneration in multiple sclerosis (MS), promoting a worse disease course. Osteopontin is also likely involved in acute MS relapses. METHODS: In 47 patients with relapsing-remitting MS, we explored the correlation between the time elapsed between the last clinical relapse and lumbar puncture, and the cerebrospinal fluid (CSF) levels of osteopontin and a group of inflammatory cytokines and adipokines such as resistin, plasminogen activator inhibitor-1, osteoprotegerin, interleukin (IL)-1ß, IL-2, IL-6 and IL-1 receptor antagonist (IL-1ra). We also analyzed the correlations between CSF levels of osteopontin and the other CSF molecules considered. RESULTS: Osteopontin CSF concentrations were higher in patients with a shorter time interval between the last clinical relapse and CSF withdrawal. In addition, CSF levels of osteopontin were positively correlated with the proinflammatory cytokines IL-2 and IL-6 and negatively correlated with the anti-inflammatory molecule IL-1ra. CONCLUSIONS: Our results further suggest the role of osteopontin in acute MS relapses showing that, in proximity to relapses, osteopontin expression in CSF may be increased along with other proinflammatory mediators and correlated with decreased concentrations of anti-inflammatory molecules.

9.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36609826

ABSTRACT

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Neurodegenerative Diseases/metabolism , Ion Channels/metabolism , Lysosomes/metabolism , Dopaminergic Neurons/metabolism , Potassium Channels/metabolism
10.
Front Neurol ; 14: 1296924, 2023.
Article in English | MEDLINE | ID: mdl-38145127

ABSTRACT

Introduction: Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4 patients to highlight the occurrence of splicing mutations and combine functional studies to assess the relevance of these variants in the molecular mechanisms of the disease. Methods: We performed an NGS panel in 105 patients, in silico analysis for splicing mutations, and in vitro minigene assay. Results and discussion: The NGS panel was applied to screen 105 patients carrying a clinical phenotype corresponding to upper motor neuron syndrome (UMNS), selectively affecting motor control of lower limbs. Pathogenic mutations in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4 splicing variants. Then, we focused on the patients carrying splicing variants using a combined approach of in silico and in vitro analysis through minigene assay and RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T), functional assays confirm the types of molecular alterations suggested by the in silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-1delG differed from what was predicted (skipping exon 7), and the functional study indicates the loss of frame and formation of a premature stop codon. The present study evidenced the high splice variants in SPG4 patients and indicated the relevance of functional assays added to in silico analysis to decipher the pathogenic mechanism.

12.
Nutrients ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36558388

ABSTRACT

Polyphenols are naturally occurring compounds endowed with antioxidant and anti-inflammatory properties. We sought to examine the association of dietary polyphenols with the risk of severe lumbar spinal stenosis (LSS), a condition possibly characterized by a high inflammatory component. A case-control study included 156 patients with LSS and indication to surgery and 312 controls, matched (1:2) for sex, age (±6 months), and physical activity. The polyphenol intake was calculated by matching food consumption data from a 188-item food frequency questionnaire with the Phenol-Explorer database regarding the polyphenol content of each reported food. In a multivariable-adjusted logistic regression analysis including lifestyles, sociodemographic factors, and the Mediterranean Diet Score, a 1-standard deviation (SD) increase in dietary polyphenols intake was associated with lower odds of LSS (Odds ratio [OR] = 0.65; 95% CI: 0.47-0.89). Analyses of different polyphenol classes showed that a per 1-SD in the consumption of flavonoids and stilbenes was related to lower LSS risk (OR = 0.57; 95% CI: 0.42-0.78; OR = 0.40; 95% CI: 0.27-0.61, respectively). Further adjustment for the total dietary antioxidant capacity did not modify the strength of these associations. A diet rich in polyphenols is independently associated with a lower risk of severe LSS, possibly through mechanisms that include the anti-inflammatory potential of these bioactive compounds.


Subject(s)
Diet, Mediterranean , Spinal Stenosis , Humans , Infant , Polyphenols , Antioxidants , Case-Control Studies , Diet , Eating
13.
Biomedicines ; 10(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36140159

ABSTRACT

In multiple sclerosis (MS), fatigue is a frequent symptom that negatively affects quality of life. The pathogenesis of fatigue is multifactorial and inflammation may play a specific role. To explore the association between fatigue, central inflammation and disease course in MS in 106 relapsing-remitting (RR)-MS patients, clinical characteristics, including fatigue and mood, were explored at the time of diagnosis. NEDA (no evidence of disease activity)-3 status after one-year follow up was calculated. Cerebrospinal fluid (CSF) levels of a set of proinflammatory and anti-inflammatory molecules and peripheral blood markers of inflammation were also analyzed. MRI structural measures were explored in 35 patients. A significant negative correlation was found at diagnosis between fatigue measured with the Modified Fatigue Impact Scale (MFIS) and the CSF levels of interleukin (IL)-10. Conversely, no significant associations were found with peripheral markers of inflammation. Higher MFIS scores were associated with reduced probability to reach NEDA-3 status after 1-year follow up. Finally, T2 lesion load showed a positive correlation with MFIS scores and a negative correlation with CSF IL-10 levels at diagnosis. CSF inflammation, and particularly the reduced expression of the anti-inflammatory molecule IL-10, may exacerbate fatigue. Fatigue in MS may reflect subclinical CSF inflammation, predisposing to greater disease activity.

14.
J Exp Med ; 201(8): 1217-28, 2005 Apr 18.
Article in English | MEDLINE | ID: mdl-15824082

ABSTRACT

Hypertension affects nearly 20% of the population in Western countries and strongly increases the risk for cardiovascular diseases. In the pathogenesis of hypertension, the vasoactive peptide of the renin-angiotensin system, angiotensin II and its G protein-coupled receptors (GPCRs), play a crucial role by eliciting reactive oxygen species (ROS) and mediating vessel contractility. Here we show that mice lacking the GPCR-activated phosphoinositide 3-kinase (PI3K)gamma are protected from hypertension that is induced by administration of angiotensin II in vivo. PI3Kgamma was found to play a role in angiotensin II-evoked smooth muscle contraction in two crucial, distinct signaling pathways. In response to angiotensin II, PI3Kgamma was required for the activation of Rac and the subsequent triggering of ROS production. Conversely, PI3Kgamma was necessary to activate protein kinase B/Akt, which, in turn, enhanced L-type Ca(2+) channel-mediated extracellular Ca(2+) entry. These data indicate that PI3Kgamma is a key transducer of the intracellular signals that are evoked by angiotensin II and suggest that blocking PI3Kgamma function might be exploited to improve therapeutic intervention on hypertension.


Subject(s)
Angiotensin II/pharmacology , Hypertension/prevention & control , Muscle, Smooth, Vascular/drug effects , Phosphatidylinositol 3-Kinases/deficiency , Vasoconstrictor Agents/pharmacology , Animals , Aorta , Calcium/metabolism , Cells, Cultured , Hypertension/chemically induced , Isoenzymes/antagonists & inhibitors , Isoenzymes/deficiency , Male , Mesenteric Arteries , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Phosphoinositide-3 Kinase Inhibitors , Reactive Oxygen Species/metabolism , Vasoconstriction
15.
Genes (Basel) ; 12(5)2021 05 19.
Article in English | MEDLINE | ID: mdl-34069712

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD, OMIM #300100) is the most common peroxisomal disorder clinically characterized by two main phenotypes: adrenomyeloneuropathy (AMN) and the cerebral demyelinating form of X-ALD (cerebral ALD). The disease is caused by defects in the gene for the adenosine triphosphate (ATP)-binding cassette protein, subfamily D (ABCD1) that encodes the peroxisomal transporter of very-long-chain fatty acids (VLCFAs). The defective function of ABCD1 protein prevents ß-oxidation of VLCFAs, which thus accumulate in tissues and plasma, to represent the hallmark of the disease. As in many X-linked diseases, it has been routinely expected that female carriers are asymptomatic. Nonetheless, recent findings indicate that most ABCD1 female carriers become symptomatic, with a motor disability that typically appears between the fourth and fifth decade. In this paper, we report a large family in which affected males died during the first decade, while affected females develop, during the fourth decade, progressive lower limb weakness with spastic or ataxic-spastic gait, tetra-hyperreflexia with sensory alterations. Clinical and genetic evaluations were performed in nine subjects, eight females (five affected and three healthy) and one healthy male. All affected females were carriers of the c.1661G>A (p.Arg554His, rs201568579) mutation. This study strengthens the relevance of clinical symptoms in female carriers of ABCD1 mutations, which leads to a better understanding of the role of the genetic background and the genotype-phenotype correlation. This indicates the relevance to include ABCD1 genes in genetic panels for gait disturbance in women.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Mutation/genetics , Adrenoleukodystrophy/genetics , Adult , Aged , Brain/pathology , Demyelinating Diseases/genetics , Disabled Persons , Female , Genetic Association Studies/methods , Humans , Male , Middle Aged , Motor Disorders/genetics
16.
Front Aging Neurosci ; 13: 694651, 2021.
Article in English | MEDLINE | ID: mdl-34566620

ABSTRACT

Age at onset is the main risk factor for disease progression in patients with relapsing-remitting multiple sclerosis (RR-MS). In this cross-sectional study, we explored whether older age is associated with specific disease features involved in the progression independent of relapse activity (PIRA). In 266 patients with RR-MS, the associations between age at onset, clinical characteristics, cerebrospinal fluid (CSF) levels of lactate, and that of several inflammatory molecules were analyzed. The long-term potentiation (LTP)-like plasticity was studied using transcranial magnetic stimulation (TMS). Older age was associated with a reduced prevalence of both clinical and radiological focal inflammatory disease activity. Older patients showed also increased CSF levels of lactate and that of the pro-inflammatory molecules monocyte chemoattractant protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1-alpha (MIP-1α)/CCL3, and interleukin (IL)-8. Finally, TMS evidenced a negative correlation between age and LTP-like plasticity. In newly diagnosed RR-MS, older age at onset is associated with reduced acute disease activity, increased oxidative stress, enhanced central inflammation, and altered synaptic plasticity. Independently of their age, patients with multiple sclerosis (MS) showing similar clinical, immunological, and neurophysiological characteristics may represent ideal candidates for early treatments effective against PIRA.

17.
Front Genet ; 12: 682050, 2021.
Article in English | MEDLINE | ID: mdl-34354735

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is the most prevalent inherited motor sensory neuropathy, which clusters a clinically and genetically heterogeneous group of disorders with more than 90 genes associated with different phenotypes. The goal of this study is to identify the genetic features in the recruited cohort of patients, highlighting the role of rare variants in the genotype-phenotype correlation. We enrolled 67 patients and applied a diagnostic protocol including multiple ligation-dependent probe amplification for copy number variation (CNV) detection of PMP22 locus, and next-generation sequencing (NGS) for sequencing of 47 genes known to be associated with CMT and routinely screened in medical genetics. This approach allowed the identification of 26 patients carrying a whole gene CNV of PMP22. In the remaining 41 patients, NGS identified the causative variants in eight patients in the genes HSPB1, MFN2, KIF1A, GDAP1, MTMR2, SH3TC2, KIF5A, and MPZ (five new vs. three previously reported variants; three sporadic vs. five familial variants). Familial segregation analysis allowed to correctly interpret two variants, initially reported as "variants of uncertain significance" but re-classified as pathological. In this cohort is reported a patient carrying a novel familial mutation in the tail domain of KIF5A [a protein domain previously associated with familial amyotrophic lateral sclerosis (ALS)], and a CMT patient carrying a HSPB1 mutation, previously reported in ALS. These data indicate that combined tools for gene association in medical genetics allow dissecting unexpected phenotypes associated with previously known or unknown genotypes, thus broadening the phenotype expression produced by either pathogenic or undefined variants. Clinical trial registration: ClinicalTrials.gov (NCT03084224).

18.
Genes (Basel) ; 11(10)2020 09 30.
Article in English | MEDLINE | ID: mdl-33007809

ABSTRACT

In multiple sclerosis (MS), activated T and B lymphocytes and microglial cells release various proinflammatory cytokines, promoting neuroinflammation and negatively affecting the course of the disease. The immune response homeostasis is crucially regulated by the activity of the enzyme adenosine deaminase (ADA), as evidenced in patients with genetic ADA deficiency and in those treated with cladribine tablets. We investigated in a group of patients with MS the associations of a single nucleotide polymorphism (SNP) of ADA gene with disease characteristics and cerebrospinal fluid (CSF) inflammation. The SNP rs244072 of the ADA gene was determined in 561 patients with MS. Disease characteristics were assessed at the time of diagnosis; furthermore, in 258 patients, proinflammatory and anti-inflammatory molecules were measured in the CSF. We found a significant association between rs244072 and both clinical characteristics and central inflammation. In C-carriers, significantly enhanced disability and increased CSF levels of TNF, IL-5 and RANTES was observed. In addition, lower CSF levels of the anti-inflammatory cytokine IL-10 were found. Finally, the presence of the C allele was associated with a tendency of increased lymphocyte count. In MS patients, ADA SNP rs244072 is associated with CSF inflammation and disability. The selective targeting of the ADA pathway through cladribine tablet therapy could be effective in MS by acting on a pathogenically relevant biological mechanism.


Subject(s)
Adenosine Deaminase/genetics , Cladribine/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , Adult , Cytokines/cerebrospinal fluid , Female , Humans , Immunosuppressive Agents/therapeutic use , Inflammation , Leukocyte Count , Male , Multiple Sclerosis/immunology , Multiple Sclerosis/physiopathology
19.
J Neurosci ; 28(12): 3234-45, 2008 Mar 19.
Article in English | MEDLINE | ID: mdl-18354027

ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA) ("Ecstasy") produces neurotoxic effects, which result into an impairment of learning and memory and other neurological dysfunctions. We examined whether MDMA induces increases in tau protein phosphorylation, which are typically associated with Alzheimer's disease and other chronic neurodegenerative disorders. We injected mice with MDMA at cumulative doses of 10-50 mg/kg intraperitoneally, which are approximately equivalent to doses generally consumed by humans. MDMA enhanced the formation of reactive oxygen species and induced reactive gliosis in the hippocampus, without histological evidence of neuronal loss. An acute or 6 d treatment with MDMA increased tau protein phosphorylation in the hippocampus, revealed by both anti-phospho(Ser(404))-tau and paired helical filament-1 antibodies. This increase was restricted to the CA2/CA3 subfields and lasted 1 and 7 d after acute and repeated MDMA treatment, respectively. Tau protein was phosphorylated as a result of two nonredundant mechanisms: (1) inhibition of the canonical Wnt (wingless-type MMTV integration site family) pathway, with ensuing activation of glycogen synthase kinase-3beta; and (2) activation of type-5 cyclin-dependent kinase (Cdk5). MDMA induced the expression of the Wnt antagonist, Dickkopf-1, and the expression of the Cdk5-activating protein, p25. In addition, the increase in tau phosphorylation was attenuated by strategies that rescued the Wnt pathway or inhibited Cdk5. Finally, an impairment in hippocampus-dependent spatial learning was induced by doses of MDMA that increased tau phosphorylation, although the impairment outlasted this biochemical event. We conclude that tau hyperphosphorylation in the hippocampus may contribute to the impairment of learning and memory associated with MDMA abuse.


Subject(s)
Hallucinogens/pharmacology , Hippocampus/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , tau Proteins/metabolism , Analysis of Variance , Animals , Behavior, Animal/drug effects , Cyclin-Dependent Kinase 5/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Immunoprecipitation/methods , Intercellular Signaling Peptides and Proteins/genetics , Learning/drug effects , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Mutant Strains , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Wakefulness/drug effects , Wakefulness/physiology
20.
Mult Scler Relat Disord ; 26: 58-60, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30223231

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic multifactorial inflammatory and neurodegenerative disease of the central nervous system (CNS). The identification of biomarkers with good diagnostic and prognostic power is of great importance for monitoring and treating MS patients. METHODS: We analyzed serum and cerebrospinal fluid of 228 patients, with different neurological disorders and with MS to confirm our previous results and determine a possible gender difference of kFLC Index cut-off. RESULTS: We have obtained a kFLC Index cut-off of 12.5 (100% specificity and 90.4% sensitivity) and 11 (100% specificity and 97.5% sensitivity) for women and men with MS respectively. CONCLUSIONS: This study reinforces the importance that kFLC Index could have as a diagnostic aid to detect MS. Our data highlight a difference in the cut-off of the kFLC Index calculated by gender; male patients with a kFLC Index value greater than 11 are at higher risk to develop MS respect females having the same result.


Subject(s)
Immunoglobulin kappa-Chains/analysis , Multiple Sclerosis/diagnosis , Adult , Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Female , Humans , Immunoglobulin kappa-Chains/blood , Immunoglobulin kappa-Chains/cerebrospinal fluid , Male , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Sensitivity and Specificity , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL